Toward a Dichotomy for Approximation of H-Coloring

Akbar Rafiey
Department of Computing Science, Simon Fraser University, Burnaby, Canada
arafiey@sfu.ca

Arash Rafiey
Indiana State University, Terre Haute, IN, USA
Simon Fraser University, Burnaby, Canada
arash.rafiey@indstate.edu

Thiago Santos
Indiana State University, Terre Haute, IN, USA
tsantos2@sycamores.indstate.edu

Abstract

Given two (di)graphs \(G, H \) and a cost function \(c : V(G) \times V(H) \to \mathbb{Q}_{\geq 0} \cup \{+\infty\} \), in the minimum cost homomorphism problem, MinHOM(\(H \)), we are interested in finding a homomorphism \(f : V(G) \to V(H) \) (a.k.a H-coloring) that minimizes \(\sum_{v \in V(G)} c(v, f(v)) \). The complexity of exact minimization of this problem is well understood [35], and the class of digraphs \(H \), for which the MinHOM(\(H \)) is polynomial time solvable is a small subset of all digraphs.

In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(\(H \)) is not approximable if \(H \) contains a digraph asteroidal triple (DAT). We take a major step toward a dichotomy classification of approximable cases. We give a dichotomy classification for approximating the MinHOM(\(H \)) when \(H \) is a graph (i.e. symmetric digraph).

For digraphs, we provide constant factor approximation algorithms for two important classes of digraphs, namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering), and \(k \)-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that:

- **Dichotomy for Graphs:** MinHOM(\(H \)) has a \(2|V(H)| \)-approximation algorithm if graph \(H \) admits a conservative majority polymorphisms (i.e. \(H \) is a bi-arc graph), otherwise, it is inapproximable;
- MinHOM(\(H \)) has a \(|V(H)|^2 \)-approximation algorithm if \(H \) is a bi-arc digraph;
- MinHOM(\(H \)) has a \(|V(H)|^2 \)-approximation algorithm if \(H \) is a \(k \)-arc digraph.

In conclusion, we show the importance of these results and provide insights for achieving a dichotomy classification of approximable cases. Our constant factors depend on the size of \(H \). However, the implementation of our algorithms provides a much better approximation ratio. It leaves open to investigate a classification of digraphs \(H \), where MinHOM(\(H \)) admits a constant factor approximation algorithm that is independent of \(|V(H)| \).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, minimum cost homomorphism, randomized rounding

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.91

Category Track A: Algorithms, Complexity and Games

Funding Arash Rafiey: Supported by NSF 1751765.

Acknowledgements We are thankful to Andrei Bulatov for proofreading several drafts of the work and many valuable discussions that significantly improved the paper and its presentation.

© Akbar Rafiey, Arash Rafiey, and Thiago Santos; licensed under Creative Commons License CC-BY
Introduction

For a digraph D, let $V(D)$ denote the vertex set of D, and let $A(D)$ denote the arcs of D. We denote the number of vertices of D by $|D|$. Instead of $(u, v) \in A(D)$, we use the shorthand $uv \in A(D)$ or simply $uv \in D$. A graph G is a symmetric digraph, that is, $xy \in A(G)$ if and only if $(yx) \in A(G)$. An edge is just a symmetric arc.

A homomorphism of a digraph D to a digraph H (a.k.a H-COLORING) is a mapping $f : V(D) \rightarrow V(H)$ such that for each arc xy of D, $f(x)f(y)$ is an arc of H. We say mapping f does not satisfy arc xy, if $f(x)f(y)$ is not an arc of H. The homomorphism problem for a fixed target digraph H, HOM(H), takes a digraph D as input and asks whether there is a homomorphism from D to H. Therefore, by fixing the digraph H we obtain a class of problems, one problem for each digraph D. For example, HOM(H), when H is an edge, is exactly the problem of determining whether the input graph G is bipartite (i.e., the 2-COLORING problem). Similarly, if $V(H) = \{u, v, x\}, A(H) = \{uv, vu, vx, xv, ux, xu\}$, then HOM($H$) is exactly the classical 3-COLORING problem. More generally, if H is a clique on k vertices, then HOM(H) is the k-COLORING problem. The H-COLORING problem can be considered within a more general framework, the constraint satisfaction problem (CSP). In the CSP associated with a finite relational structure H, CSP(H), the question is whether there exists a homomorphism of a given finite relational structure to H. Thus, the H-COLORING problem is a particular case of the CSP in which the involved relational structures are digraphs. A celebrated result due to Hell and Nesetril [31], states that, for graph H, HOM(H) is in P if H is bipartite or contains a looped vertex, and that it is NP-complete for all other graphs H. See [9] for an algebraic proof of the same result, and [12, 55] for a dichotomy for CSP(H).

There are several natural optimization versions of the HOM(H) problem. One is to find a mapping $f : V(D) \rightarrow V(H)$ that maximizes (minimizes) number of satisfied (unsatisfied) arcs in D. This problem is known under the name of MAX 2-CSP (MIN 2-CSP). For example, the most basic Boolean MAX 2-CSP problem is MAX CUT where the target graph H is an edge. This line of research has received a lot of attention in the literature and there are very strong results concerning various aspects of approximability MAX 2-CSP and MIN 2-CSP [2, 22, 28, 41, 45]. See [47] for a recent survey on this and approximation of MAX k-CSP and MIN k-CSP. We consider another natural optimization version of the HOM(H) problem, i.e., we are not only interested in the existence of a homomorphism, but want to find the “best homomorphism”. The minimum cost homomorphism problem to H, denoted by MinHOM(H), for a given input digraph D, and a cost function $c(x, i), x \in V(D), i \in V(H)$, seeks a homomorphism f of D to H that minimizes the total cost $\sum_{x \in V(D)} c(x, f(x))$.

The cost function c can take non-negative rational values and positive infinity, that is $c : V(D) \times V(H) \rightarrow \mathbb{Q}_{\geq 0} \cup \{+\infty\}$. The MinHOM was introduced in [25], where it was motivated by a real-world problem in defence logistics. The MinHOM problem offers a natural and practical way to model and generalizes many optimization problems.

Example 1 (weighted Minimum Vertex Cover). This problem can be seen as MinHOM(H) where $V(H) = \{0, 1\}$, $E(H) = \{11, 01\}$ and $c(u, 0) = 0$, $c(u, 1) > 0$ for every $u \in V(G)$. Note that G and H are graphs.

Example 2 (List Homomorphism (LHOM)). LHOM(H), seeks, for a given input digraph D and lists $L(x) \subseteq V(H), x \in V(D)$, a homomorphism f from D to H such that $f(x) \in L(x)$ for all $x \in V(D)$. This is equivalent to MinHOM(H) with $c(u, i) = 0$ if $i \in L(u)$, otherwise $c(u, i) = +\infty$. This problem is also known as List H-COLORING and its complexity is fully understood due to series of results [5, 8, 10, 11, 18, 33].
The MinHOM problem generalizes many other problems such as (Weighted) MIN ONES [1, 15, 40], MIN SOL [39, 53], a large class of bounded integer linear programs, retraction problems [19], MINIMUM SUM COLORING [4, 21, 44], and various optimum cost chromatic partition problems [27, 37, 38, 43].

A special case of MinHOM problem is where the cost function c is chosen from a fixed set Δ. This problem is denoted by $\text{MinHOM}(H, \Delta)$ [14, 53, 54]. The VALUED CONSTRAINED SATISFACTION PROBLEMS (VCSPs) is a generalization of this special case of the MinHOM problem. An instance of the VCSP is given by a collection of variables that must be assigned labels from a given domain with the goal to minimize the objective function that is given by the sum of cost functions, each depending on some subset of the variables [13]. Interestingly, a recent work by Cohen et al. [14] proved that VCSPs over a fixed valued constraint language are polynomial-time equivalent to $\text{MinHOM}(H, \Delta)$ over a fixed digraph and a proper choice of Δ.

Exact Minimization. The complexity of exact minimization of $\text{MinHOM}(H)$ was studied in a series of papers, and complete complexity classifications were given in [23] for undirected graphs, in [35] for digraphs, and in [51] for more general structures. Certain minimum cost homomorphism problems have polynomial time algorithms [23, 24, 25, 35], but most are NP-hard. We remark that, the complexity of exact minimization of VCSPs is well understood [42, 52].

Approximation. For a minimization problem, an α-approximation algorithm is a (randomized) polynomial-time algorithm that finds an approximate solution of cost at most α times the minimum cost. A constant ratio approximation algorithm is an α-approximation algorithm for some constant α. We say a problem is not approximable if there is no polynomial time approximation algorithm with a multiplicative guarantee unless $P = NP$. The approximability of MinHOM is fairly understood when we restrict the cost function to a fixed set Δ, and further, we restrict it to take only finite values (not ∞). This setting is a special case of finite VCSPs, and there are strong approximation results on finite VCSPs. For finite VCSPs, Raghavendra [50] showed how to use the basic SDP relaxation to obtain a constant approximation. Moreover, he proved that the approximation ratio cannot be improved under UNIQUE GAME CONJECTURE (UGC). This constant is not explicit, but there is an algorithm that can compute it with any given accuracy in doubly exponential time. In another line of research, the power of so-called basic linear program (BLP) concerning constant factor approximation of finite VCSPs has been recently studied in [16, 17]. However, the approximability of VCSPs for constraint languages that are not finite-valued remains poorly understood, and [30, 39] are the only results on approximation of VCSP for languages that have cost functions that can take infinite values.

Hell et al., [30] proved a dichotomy for approximating $\text{MinHOM}(H)$ when H is a bipartite graph by transforming the $\text{MinHOM}(H)$ to a linear program, and rounding the fractional values to get a homomorphism to H.

Theorem 3 (Dichotomy for bipartite graphs [30]). For a fixed bipartite graph H, $\text{MinHOM}(H)$ admits a constant factor approximation algorithm if H admits a min-ordering (complement of H is a circular arc graph), otherwise $\text{MinHOM}(H)$ is not approximable unless $P = NP$.

Beyond this, there is no result concerning the approximation of $\text{MinHOM}(H)$. We go beyond bipartite case and present a constant factor approximation algorithm for bi-arc graphs (graphs with a conservative majority polymorphism). Designing an approximation
algorithm for MinHOM(H) when H is a digraph is much more complex than when H is a graph. We improve state-of-the-art by providing constant factor approximation algorithms for MinHOM(H) where H belongs to these two important cases of digraphs, namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism a.k.a min-ordering), and k-arc digraphs (digraphs with a k-min-ordering). To do so, we introduce new LPs that reflect the structural properties of the target (di)graph H as well as new methods to round the fractional solutions and obtain homomorphisms to H. We will show our randomized rounding procedure can be de-randomized, and hence, we get a deterministic polynomial algorithm. Furthermore, we argue that our techniques can be used towards finding a dichotomy for the approximation of MinHOM(H).

1.1 Our Contributions

Most of the minimum cost homomorphism problems are NP-hard, therefore we investigate the approximation of MinHoM(H).

Approximating Minimum Cost Homomorphism to Digraph H.

Input: A digraph D and a vertex-mapping costs $c(x,u), x \in V(D), u \in V(H)$,

Output: A homomorphism f of D to H with the total cost of $\sum_{x \in V(D)} c(x,f(x)) \leq \alpha \cdot \text{OPT}$, where α is a constant.

Here, OPT denotes the cost of a minimum cost homomorphism of D to H. Moreover, we assume size of H is constant. Recall that we approximate the cost over real homomorphisms, rather than approximating the maximum weight of satisfied constraints, as in, say, MAX CSP. One can show that if LHOM(H) is not polynomial time solvable then there is no approximation algorithm for MinHOM(H) [30, 48].

▶ **Observation 4.** If LHOM(H) is not polynomial time solvable, then there is no approximation algorithm for MinHOM(H).

The complexity of the LHOM problems for graphs, digraphs, and relational structures (with arity two and higher) have been classified in [18, 33, 10] respectively. LHOM(H) is polynomial time solvable if the digraph H does not contain a digraph asteroidal triple (DAT)\(^1\) as an induced sub-digraph, and NP-complete when H contains a DAT [33].

MinHOM(H) is polynomial time solvable when digraph H admits a k-min-max-ordering, a subclass of DAT-free digraphs, and otherwise, NP-complete [35, 34]. Here, in this paper, we take an important step towards closing the gap between DAT-free digraphs and the one that admit a k-min-max-ordering. First, we consider digraphs that admit a min-ordering. Digraphs that admit a min-ordering have been studied under the name of bi-arc digraphs [36] and signed interval digraphs [29]. Deciding if digraph H has a min-ordering and finding a min-ordering of H is in P [36]. We provide a constant factor approximation algorithm for MinHOM(H) where H admits a min-ordering.

▶ **Theorem 5 (Digraphs with a min-ordering).** If digraph H admits a min-ordering, then MinHOM(H) has a constant factor approximation algorithm.

Sections 4,5 are dedicated to the proof of Theorem 5. In section 6, we turn our attention to digraphs with k-min-orderings, for integer $k > 1$. They are also called digraphs with extended X-underbar [3, 26, 46]. It was shown in [26] that if H has the X-underbar property,
then the HOM(H) problem is polynomial time solvable. In Lemma 21, we show that if H admits a k-min-ordering, then H is a DAT-free digraph, and provide a simple proof that LHOM(H) is polynomial time solvable. Finally, we have the following theorem.

Theorem 6 (Digraphs with a k-min-ordering). If digraph H admits a k-min-ordering for some integer k > 1, then MinHOM(H) has a constant factor approximation algorithm.

Considering graphs, Feder et al., [18] proved that LHOM(H) is polynomial time solvable if H is a bi-arc graph, and is NP-complete otherwise. In the same paper, they showed graph H is a bi-arc graph iff it admits a conservative majority polymorphism. In Section 7, we show that the same dichotomy classification holds in terms of approximation.

Theorem 7 (Dichotomy for graphs). There exists a constant factor approximation algorithm for MinHOM(H) if H is a bi-arc graph, otherwise MinHOM(H) is inapproximable.

In section 8, we give a concrete plan of how to solve the general case. By combining the approach for obtaining the dichotomy in the graph case, together with the idea of getting an approximation algorithm for digraphs admitting a min-ordering, we might be able to achieve a constant factor approximation algorithm for MinHOM(H) when H is DAT-free.

Our constant factors depend on the size of H. However, the implementation of the LP and the ILP would yield a small integrality gap (details in the full version [49]). This indicates perhaps a better analysis of the performance of our algorithm is possible.

Open Problem 8. For which digraphs MinHOM(H) is approximable within a constant factor independent of size of H?

2 Preliminaries and Definitions

Complexity and approximation of the minimum cost homomorphism problems, and in general the constraint satisfaction problems, are often studied under the existence of polymorphisms [6]. A polymorphism of H of arity k is a mapping f from the set of k-tuples over V(H) to V(H) such that if x,yi ∈ A(H) for i = 1,2,...,k, then f(x1,x2,...,xk)f(y1,y2,...,yk) ∈ A(H). If f is a polymorphism of H we also say that H admits f. A polymorphism f is idempotent if it satisfies f(x,x,...,x) = x for all x ∈ V(H), and is conservative if f(x1,x2,...,xk) ∈ {x1,x2,...,xk}. A conservative semi-lattice polymorphism is a conservative binary polymorphism that is associative, idempotent, commutative. A conservative majority polymorphism µ of H is a conservative ternary polymorphism such that µ(x,x,y) = µ(x,y,x) = µ(y,x,x) = x for all x, y ∈ V(H).

A conservative semi-lattice polymorphism of H naturally defines a binary relation x ≤ y on the vertices of H by x ≤ y iff f(x,y) = x; by associativity, the relation ≤ is a linear order on V(H), which we call a min-ordering of H.

Definition 9. The ordering v1 < v2 < · · · < vn of V(H) is a

- **min-ordering** iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′ ∈ A(H);
- **max-ordering** iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that u′v ∈ A(H);
- **min-max-ordering** iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′, u′v ∈ A(H).

For bipartite graph H = (B,W) let H be the digraph obtained by orienting all the edges of H from B to W. If H admits a min-ordering then we say H admits a min-ordering. It is worth mentioning that, a bipartite graph H admits a conservative majority, iff it admits a min-ordering [30]. Moreover, the complement of H is a circular arc graphs with clique cover two [18].
Definition 10. Let $H = (V, E)$ be a digraph that admits a homomorphism $f : V(H) \rightarrow C_k^r$ (here C_k^r is the induced directed cycle on $\{0, 1, 2, \ldots, k-1\}$ i.e., arc set $\{(01, 12, 23, \ldots, (k-2)(k-1), (k-1)0\}$). Let $V_i = f^{-1}(i)$, $0 \leq i \leq k-1$.

- A k-min-ordering of H is a linear ordering $<$ of the vertices of H, so that $<$ is a min-ordering on the subgraph induced by any two circularly consecutive V_i, V_{i+1} (subscript addition modulo k).
- A k-min-max-ordering of H is a linear ordering $<$ of the vertices of H, so that $<$ is a min-max-ordering on the subgraph induced by any two circularly consecutive V_i, V_{i+1} (subscript addition modulo k).

3 LP for Digraphs with a min-max-ordering

Before presenting the LP, we give a procedure to modify lists associated to the vertices of D. To each vertex $x \in D$, associate a list $L(x)$ that initially contains $V(H)$. Think of $L(x)$ as the set of possible images for x in a homomorphism from D to H. Apply the arc consistency procedure as follows. Take an arbitrary arc $xy \in A(D)$ ($yx \in A(D)$) and let $a \in L(x)$. If there is no out-neighbor (in-neighbor) of a in $L(y)$ then remove a from $L(x)$. Repeat this until a list becomes empty or no more changes can be made. Note that if we end up with an empty list after arc consistency then there is no homomorphism of D to H.

Let $a_1, a_2, a_3, \ldots, a_p$ be a min-max-ordering $<$ of the target digraph H. Define $\ell^+(i)$ to be the smallest subscript j such that a_j is an out-neighbor of a_i (and $\ell^-(i)$ to be the smallest subscript j such that a_j is an in-neighbor of a_i).

Consider the following linear program. For every vertex v of D and every vertex a_i of H define variable v_i. Moreover, define variable v_{p+1} for every $v \in D$ whose value is set to zero.

$$\begin{align*}
\min & \quad \sum_{v, i} c(v, a_i)(v_i - v_{i+1}) \\
\text{subject to:} & \quad v_i \geq 0 \quad (C1) \\
& \quad v_1 = 1 \quad (C2) \\
& \quad v_{p+1} = 0 \quad (C3) \\
& \quad v_{i+1} \leq v_i \quad (C4) \\
& \quad v_{i+1} = v_i \quad \text{if } a_i \notin L(v) \quad (C5) \\
& \quad u_i \leq v_{l^+(i)} \quad \forall uv \in A(D) \quad (C6) \\
& \quad v_i \leq u_{l^-(i)} \quad \forall uv \in A(D) \quad (C7)
\end{align*}$$

Let S denote the set of constraints of the above LP, then:

Theorem 11. If digraph H admits a min-max-ordering, then there is a one-to-one correspondence between homomorphisms of D to H and integer solutions of S.

Proof. For homomorphism $f : D \rightarrow H$, if $f(v) = a_i$ we set $v_i = 1$ for all $i \leq t$, otherwise we set $v_i = 0$. We set $v_1 = 1$ and $v_{p+1} = 0$ for all $v \in V(D)$. Now all the variables are nonnegative and we have $v_{i+1} \leq v_i$. Note that if $a_i \notin L(v)$ then $f(v) \neq a_i$ and we have $v_i - v_{i+1} = 0$. It remains to show that $u_i \leq v_{l^+(i)}$ for every uv arc in D. Suppose for contradiction that $u_i = 1$ and $v_{l^+(i)} = 0$ and let $f(u) = a_r$ and $f(v) = a_s$. This implies that $u_r = 1$, whence $i \leq r$; and $v_s = 1$, whence $s < l^+(i)$. Since $a_i a_{l^+(i)}$ and $a_r a_s$ both are arcs of H with $i \leq r$ and $s < l^+(i)$, the fact that H has a min-ordering implies that $a_r a_s$ must also be an arc of H, contradicting the definition of $l^+(i)$. The proof for $v_i \leq u_{l^-(i)}$ is analogous.

Conversely, if there is an integer solution for S, we define a homomorphism f as follows: we let $f(v) = a_{t_i}$ when i is the largest subscript with $v_i = 1$. We prove that this is indeed a homomorphism by showing that every arc of D is mapped to an arc of H. Let uv be an arc
of D and assume $f(u) = a_r$, $f(v) = a_s$. We show that $a_r a_s$ is an arc in H. Observe that $1 = u_r \leq v_{t^+(r)} \leq 1$ and $1 = v_i \leq u_{l^-(s)} \leq 1$, therefore we must have $v_{t^+(r)} = u_{l^-(s)} = 1$. Since r and s are the largest subscripts such that $u_r = v_s = 1$ then $l^+(r) \leq s$ and $l^-(s) \leq r$. Since $a_r a_{t^+(r)}$ and $a_s a_{l^-(s)}$ are arcs of H, we must have the arc $a_r a_s$, as H admits a max-ordering. Furthermore, $f(v) = a_i$ iff $v_i = 1$ and $v_{i+1} = 0$, so, $c(v, a_i)$ contributes to the sum iff $f(v) = a_i$. \end{proof}

We have translated the minimum cost homomorphism problem to a linear program. In fact, this linear program corresponds to a minimum cut problem in an auxiliary network, and can be solved by network flow algorithms [23, 48]. In [30], a similar result to Theorem 11 was proved for the MinHOM(H) problem on undirected graphs when target graph H is bipartite and admits a min-max-ordering. We shall enhance the above system S to obtain an approximation algorithm for the case where H is only assumed to admit a min-ordering.

4 LP for Digraphs with a min-ordering

In the rest of the paper assume lists are not empty. Moreover, non-empty lists guarantee a homomorphism when H admits a min-ordering.

Lemma 12. [32] Let H be a digraph that admits a min-ordering. If all the lists are non-empty after arc consistency, then there exists a homomorphism from D to H.

Suppose a_1, a_2, \ldots, a_p is a min-ordering of H. Let E' denote the set of all the pairs (a_i, a_j) such that $a_i a_j$ is not an arc of H, but there is an arc $a_i a_j$ of H with $j' < j$ and an arc $a_i a_j$ of H with $i' < i$. Let $E = A(H)$ and define H' to be the digraph with vertex set $V(H)$ and arc set $E \cup E'$. Note that E and E' are disjoint sets.

Observation 13. The ordering a_1, a_2, \ldots, a_p is a min-max-ordering of H'.

Observation 14. Let $e = a_i a_j \in E'$. Then a_i does not have any out-neighbor in H after a_j, or a_j does not have any in-neighbor in H after a_i.

Observation 14 easily follows from the fact that H has a min-ordering. Since H' has a min-max-ordering, we can form system of linear inequalities S, for H' as described in Section 3. Homomorphisms of D to H' are in a one-to-one correspondence with integer solutions of S, by Theorem 11. However, we are interested in homomorphisms of D to H, not H'. Therefore, we shall add further inequalities to S to ensure that we only admit homomorphisms from D to H, i.e., avoid mapping arcs of D to the arcs in E'.

For every arc $e = a_i a_j \in E'$ and every arc $w \in A(D)$, by Observation 14, two of the following set of inequalities will be added to S (i.e. either (C8), (C11) or (C9), (C10) or (C11)).

\begin{align*}
v_j &\leq u_a + \sum_{t \in \text{IN}(a) \in L(u)} (u_t - u_{t+1}) \quad \text{if } a \in L(u) \text{ is the first in-neighbor of } a_j \text{ after } a_i \tag{C8} \\
v_j &\leq v_{j+1} + \sum_{t \in \text{IN}(a) \in L(u)} (u_t - u_{t+1}) \quad \text{if } a_j \text{ has no in-neighbor after } a_i \tag{C9} \\
u_a &\leq v_s + \sum_{t \in \text{OUT}(a) \in L(v)} (v_t - v_{t+1}) \quad \text{if } a \in L(v) \text{ is the first out-neighbor of } a_i \text{ after } a_j \tag{C10} \\
u_a &\leq u_{a+1} + \sum_{t \in \text{OUT}(a) \in L(v)} (v_t - v_{t+1}) \quad \text{if } a_i \text{ has no out-neighbor after } a_j \tag{C11}
\end{align*}

Additionally, for every pair $(x, y) \in V(D) \times V(D)$ consider a list $L(x, y)$ of possible pairs (a, b), $a \in L(x)$ and $b \in L(y)$. Perform pair consistency procedure as follows. Consider three vertices $x, y, z \in V(D)$. For $(a, b) \in L(x, y)$ if there is no $c \in L(z)$ such that $(a, c) \in L(x, z)$
and \((c, b) \in L(z, y)\) then remove \((a, b)\) from \(L(x, y)\). Repeat this until a pair list becomes empty or no more changes can be made. Here, we assume that after pair consistency procedure no pair list is empty, as otherwise there is no homomorphism of \(D\) to \(H\). Therefore, by pair consistency, add the following constraints for every \(u, v\) in \(V(D)\) and \(a_t \in L(u)\):

\[
u_{i} - u_{i+1} \leq \sum_{(a_t, a_j) \in L(u, v)} (v_j - v_{j+1}) \quad (C12)
\]

\[\text{Lemma 15. If } H \text{ admits a min-ordering, then there is a one-to-one correspondence between homomorphisms of } D \text{ to } H \text{ and integer solutions of the extended system } S.\]

5 Approximation for Digraphs with a min-ordering

In what follows, we describe an overview of our approximation algorithm for MinHOM\((H)\) where the fixed digraph \(H\) has a min-ordering. We encourage the reader to see Algorithm 1 while reading this section. An overview of the proofs of the correctness and approximation bound are postponed for the later subsections (further details in the full version [49]).

Let \(D\) be the input digraph together with a cost function \(c\). Let \(a_1, \ldots, a_p\) be a min-ordering of the vertices of \(H\). The algorithm, first constructs digraph \(H'\) from \(H\) as in Section 4. By Observation 13, \(a_1, \ldots, a_p\) is a min-max-ordering for \(H'\). By Lemma 15, the integral solutions of the extended LP are in one-to-one correspondence to homomorphisms from \(D\) to \(H\). At this point, our algorithm will minimize the cost function over extended \(S\) in polynomial time using a linear programming algorithm. This will generally result in a fractional solution (Even though the original system \(S\) is known to be totally unimodular [23, 48] and hence have integral optima, we have added inequalities, and hence lost this advantage). We will obtain an integer solution by a randomized procedure called rounding. Choose, uniformly at random, a random variable \(X \in [0, 1]\), and define the rounded values \(u_i' = 1\) when \(u_i \geq X\) (\(u_i\) is the returned value by the LP), and \(u_i' = 0\) otherwise. It is easy to check that the rounded values satisfy the original inequalities, i.e., correspond to a homomorphism \(f\) of \(D\) to \(H'\).

Now the algorithm will once more modify the solution \(f\) to become a homomorphism from \(D\) to \(H\), i.e., to avoid mapping the arcs of \(D\) to the arcs in \(E'\). This will be accomplished by another randomized procedure, which we call Shift. We choose, uniformly at random, another random variable \(Y \in [0, 1]\), which will guide the shifting. Let \(F\) denote the set of all arcs in \(E'\) to which some arcs of \(D\) are mapped by \(f\). If \(F\) is empty, we need no shifting. Otherwise, let \(a_t a_j\) be an arc of \(F\). Since \(F \subseteq E'\), Observation 14 implies that either \(a_j\) has no in-neighbor after \(a_t\), or \(a_t\) has no out-neighbor after \(a_j\). Suppose the first case happens (the shifting process is similar in the other case).

Consider a vertex \(v\) in \(D\) such that \(f(v) = a_j\) (i.e. \(v_j' = 1\) and \(v_{j+1}' = 0\)) and \(v\) has an in-neighbor \(u\) in \(D\) with \(f(u) = a_t\) (i.e. \(u_j' = 1\) and \(u_{j+1}' = 0\)). For such a vertex \(v\), let \(S_v = \{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\}\) be the set of all vertices \(a_i\) with \(t < j\) such that \(a_i a_t \in E\) and \(a_t \in L(v)\). Suppose \(S_v\) consists of \(a_t\) with subscripts \(t\) ordered as \(t_1 < t_2 < \cdots < t_k\).

\[\text{Lemma 16. During procedure Shift, the set of indices } t_1 < \cdots < t_k \text{ considered in Line 6 of the Algorithm 1 is non-empty.}\]

By Lemma 16, \(S_v\) is not empty. The algorithm now selects one vertex from this set as follows. Let \(P_{v,t} = \frac{v_{t}-v_{t+1}}{P_{v}}\), where \(P_{v} = \sum_{(a_t, a_j) \in L(v)} (v_j - v_{j+1})\).

Note that \(P_v > 0\) because of constraints (C9) and (C10). Then \(a_{t_q}\) is selected if

\[
\sum_{p=1}^q P_{v,t_p} < Y \leq \sum_{p=1}^{q+1} P_{v,t_p}.
\]

Thus a concrete \(a_t\) is selected with probability \(P_{v,t}\), which is
proportional to the difference of the fractional values \(v_t - v_{t+1} \). When the selected vertex is \(a_t \), we shift the image of the vertex \(v \) from \(a_j \) to \(a_t \), and set \(v'_r = 1 \) if \(r \leq t \), else set \(v'_r = 0 \). Note that \(a_t \) is before \(a_j \) in the min-ordering. Now we might need to shift images of the neighbors of \(v \). In this case, repeat the shifting procedure for neighbors of \(v \). This processes continues in a Breadth-first search (BFS) like manner, until no more shift is required (Figure 1 gives an illustration). Note that a vertex might be visited multiple times in procedure shift while a pair \((v,a_i) \in V(D) \times V(H)\) is considered at most one time.

We now claim that the cost of this homomorphism is at most \(|V(H)|^2 \) times the minimum cost of a homomorphism. Let \(w \) denote the value of the objective function with the fractional optimum \(u_i, v_j \), and \(w' \) denote the value of the objective function with the final values \(u'_i, v'_j \), after the rounding and all the shifting. Also, let \(w^* \) be the minimum cost of a homomorphism of \(D \) to \(H \). Obviously, \(w \leq w^* \leq w' \).

We now show that the expected value of \(w' \) is at most a constant times \(w \). Let us focus on the contribution of one summand, say \(v'_t - v'_{t+1} \), to the calculation of the cost. In any integer solution, \(v'_t - v'_{t+1} \) is either 0 or 1. The probability that \(v'_t - v'_{t+1} \) contributes to \(w' \) is the probability of the event that \(v'_t = 1 \) and \(v'_{t+1} = 0 \). This can happen in the following:

![Figure 1](image-url) Two examples. In the right example, the target digraph is \(H_1 \) and input is \(D_1 \). Digraphs \(D_1 \) and \(H_1 \) both can be view as bipartite graphs and \(1, 2, 3, 4, 5, 6, 7 \) is a min-ordering of \(H \). When \(x, y \) are mapped to 3 and \(w \) is mapped to 6 then the algorithm should shift the image of \(w \) from 6 to 5 and since 35 is an arc there is no need to shift the image of \(y \). In the left example, the target digraph is \(H \) and the input is \(D \). \(1, 2, 3, 4, 5, 6, 7, 8 \) is a min-ordering of \(H \) and 24 is a missing arc. Suppose \(x \) is mapped to 2, \(y \) to 4, \(w \) to 7, \(z \) to 8, \(u \) to 5 and \(v \) to 2. Then we should shift the image of \(y \) to 3 and then \(w \) to 6 and \(z \) to 6 and then \(u \) to 3 and \(v \) to one of the 1, 2.

We remark that the images of vertices in \(D \) are always shifted towards smaller elements in their lists. Lemma 17 shows that this shifting modifies the homomorphism \(f \), and hence, the corresponding values of the variables. Namely, \(v'_{t+1}, \ldots, v'_t \) are reset to 0, keeping all other values the same. Note that these modified values still satisfy the original set of constraints \(S \), i.e., the modified mapping is still a homomorphism.

Lemma 17. Procedure shift, in polynomial time, returns a homomorphism of \(D \) to \(H' \).

We repeat the same process for the next \(v \) with these properties, until no edge of \(D \) is mapped to an edge in \(E' \). Each iteration involves at most \(|V(H)| \cdot |V(D)| \) shifts. After at most \(|E'| \) iterations, no edge of \(D \) is mapped to an edge in \(F \) and we no longer need to shift. Next theorem follows from Lemma 16 and 17.

Theorem 18. Our algorithm, in polynomial time, returns a homomorphism of \(D \) to \(H \).

5.1 Analyzing the Approximation Ratio

We now claim that the cost of this homomorphism is at most \(|V(H)|^2 \) times the minimum cost of a homomorphism. Let \(w \) denote the value of the objective function with the fractional optimum \(u_i, v_j \), and \(w' \) denote the value of the objective function with the final values \(u'_i, v'_j \), after the rounding and all the shifting. Also, let \(w^* \) be the minimum cost of a homomorphism of \(D \) to \(H \). Obviously, \(w \leq w^* \leq w' \).

We now show that the expected value of \(w' \) is at most a constant times \(w \). Let us focus on the contribution of one summand, say \(v'_t - v'_{t+1} \), to the calculation of the cost. In any integer solution, \(v'_t - v'_{t+1} \) is either 0 or 1. The probability that \(v'_t - v'_{t+1} \) contributes to \(w' \) is the probability of the event that \(v'_t = 1 \) and \(v'_{t+1} = 0 \). This can happen in the following:
Algorithm 1 Approximation MinHOM(H).

1: **procedure** APPROX-MINHOM(D,H)
2: Construct H' from H (as in Section 3)
3: Let u_s be the (fractional) values returned by the extended LP
4: Choose a random variable $X \in [0,1]$, and $\forall u_s$: if $X \leq u_i$ set $u'_i = 1$, else let $u'_i = 0$
5: Let $f(u) = a_i$ where i is the largest subscript with $u'_i = 1$ \(\triangleright \) f is a homomorphism from D to H'
6: Choose a random variable $Y \in [0,1]$
7: while $\exists u \in A(D)$ such that $f(u)f(v) \notin A(H) \text{ or } vu \in A(D)$ with $f(v)f(u) \notin A(H)$ do
8: \(\triangleright \) Here we assume the first condition holds, the other case is similar
9: \(\triangleright \) Further, we assume $f(v)$ does not have an in-neighbor after $f(u)$ then Shift(f,v)
10: \(\triangleright \) else if $f(u)$ does not have an out-neighbor after $f(v)$ then Shift(f,u)
11: return f \(\triangleright \) f is a homomorphism from D to H

Algorithm 2 The Shifting Procedure.

1: **procedure** Shift(f,x)
2: Let Q be a Queue, $Q.enqueue(x)$
3: while Q is not empty do
4: $v \leftarrow Q.dequeue()$
5: for $uv \in A(D)$ with $f(u)f(v) \notin A(H)$ or $vu \in A(D)$ with $f(v)f(u) \notin A(H)$ do
6: \(\triangleright \) Let $t_1 < \cdots < t_k$ be indices so that $a_{t_j} < f(v), a_{t_j} \in L(v), f(u)a_{t_j} \in A(H)$
7: Let $P_v \leftarrow \sum_{j=1}^{k} (v_{t_j} - v_{t_{j+1}})$ and $P_{v,t} \leftarrow (v_t - v_{t+1}) / P_v$
8: if $\sum_{p=1}^{q} P_{v,t_p} < Y \leq \sum_{p=1}^{q+1} P_{v,t_p}$ then
9: $f(v) \leftarrow a_{t_i}$, set $v'_i = 1$ for $1 \leq i \leq t_q$, and set $v'_i = 0$ for $t_p < i$
10: for $vz \in A(D)$ ($zv \in A(D)$) with $f(v)f(z) \notin A(H)$ ($f(z)f(v) \notin A(H)$) do
11: $Q.enqueue(z)$
12: return f \(\triangleright \) f is a homomorphism from D to H'

1. v is mapped to a_t by rounding, and is not shifted away. In other words, we have $v'_t = 1$ and $v'_{t+1} = 0$ after rounding, and these values don’t change by procedure Shift.
2. v is first mapped to some $a_j, j > t$, by rounding, and then re-mapped to a_t by procedure Shift.

\(\triangleright \) **Lemma 19.** The expected contribution of one summand, say $v'_t - v'_{t+1}$, to the expected cost of w' is at most $|V(H)|^2 c(v,a_t)(v_t - v_{t+1})$.

\(\triangleright \) **Theorem 20.** Algorithm 1 returns a homomorphism with expected cost $|V(H)|^2 \cdot OPT$. The algorithm can be de-randomized to obtain a deterministic $|V(H)|^2$-approximation algorithm.
6 Approximation for Digraphs with a k-min-ordering

Digraphs admitting k-min-ordering ($k > 1$) do not admit a min-ordering or a conservative majority polymorphism. However, this does not rule out the possibility of a constant factor approximation algorithm. We show that they are in fact DAT-free digraphs, and they admit a nice geometric representation (see the full version [49]).

Lemma 21. Let H be a digraph that admits a k-min-ordering. Then H is DAT-free, and $LHOM(H)$ is polynomial time solvable.

Let H be a digraph with a k-min-ordering ($k > 1$) and partition V_0, V_1, \ldots, V_k-1 of its vertices, and let $<$ be a k-min-ordering of $V(H)$. It is easy to argue that the input digraph D must be homomorphic to \overrightarrow{C}_k^π otherwise there is no homomorphism from D to H. Therefore, we assume (for some $0 \leq \ell \leq k-1$), $L(u) \subseteq V_i$ for every $u \in U_{i+\ell}$, $0 \leq i \leq k-1$. Now the LP is designed according to the lists L. Since $<$ is a min-ordering of $V_i \cup V_{i+1}$, the constraints are very similar to the ones in Section 3. The conclusion of this section is the following:

Theorem 22. There is a (deterministic) $|V(H)|^2$-approximation algorithm for $\text{MinHOM}(H)$ when the target digraph H admits a k-min-ordering, $k > 1$.

7 A Dichotomy for Graphs

Feder and Vardi [20] proved that if a graph H admits a conservative majority polymorphism, then $LHOM(H)$ is polynomial time solvable. Later, Feder et al., [18] showed that $LHOM(H)$ is polynomial time solvable iff H is a bi-arc graph. Hence, by Observation 4, the problem is inapproximable beyond bi-arc graphs. A bi-arc graph is represented by a pair of families of arcs on a circle with specific conditions (exact definition is given in the full version [49]). Note that in a bi-arc graph a vertex may have a self-loop.

Theorem 23 ([7, 18]). A graph admits a conservative majority polymorphism iff it is a bi-arc graph.

Definition 24 (G^*). Let $G = (V, E)$ be a graph. Let G^* be a bipartite graph with partite sets V, V' where V' is a copy of V. Two vertices $u \in V$, and $v' \in V'$ of G^* are adjacent in G^* iff uv is an edge of G.

A circular arc graph is a graph that is the intersection graph of a family of arcs on a circle. A bipartite graph whose complement is a circular arc graph, is called a co-circular arc graph. Note that co-circular arc graphs are irreflexive, meaning no vertex has a loop.

Lemma 25. Let H^* be the bipartite graph constructed from a bi-arc graph H. Then H^* is a co-circular arc graph and H^* admits a min-ordering.

Let H be a bi-arc graph, with vertex set I, and let $H^* = (I, I')$ be the bipartite graph constructed from H. Let a_1, a_2, \ldots, a_k be an ordering of the vertices in I and b_1, b_2, \ldots, b_p be an ordering of the vertices of I'. Note that each a_i has a copy $b_{\pi(i)}$ in $\{b_1, b_2, \ldots, b_p\}$ where π is a permutation on $\{1, 2, 3, \ldots, p\}$. By Lemma 25, let us assume $a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_p$ is a min-ordering for H^*.

Let G be the input graph with vertex set V and a cost function c. Construct G^* from G with vertex set $V \cup V'$ as in Definition 24. Now construct an instance of the $\text{MinHOM}(H^*)$ for the input graph G^* and set $c(v', b_{\pi(i)}) = c(v, a_i)$ for $v \in V$ and $v' \in V'$. Further, make H^* a digraph by orienting all its edges from I to I', and similarly make G^* a digraph by
Toward a Dichotomy for Approximation of H-Coloring

oriented all its edges from V to V'. Note that, by construction of H* and G*, there exists a homomorphism f: G → H with cost C iff there exists homomorphism f*: G* → H* with cost 2C such that, if f*(v) = a, then f*(v') = b_j with j = π(i).

We first perform the arc consistency and pair consistency procedures for the vertices in G*. Note that if L(u) contains element a_i then L(u') contains b_{π(i)} and when L(u') contains some b_j then L(u) contains a_{π−1(j)}. Next, we define the system of linear equations S* with the same construction as in Sections 3, 4. Further, we add the following constraint to S*

\[u_i - u_{i+1} = u_{π(i)} - u_{π(i)+1} \quad \forall u, u' \in G*, \forall a_i, b_{π(i)} \in H* \]

Lemma 26. If H is a bi-arc graph, then there is a one-to-one correspondence between homomorphisms from G to H and integer solutions of S*.

Once again we round an optimal fractional solution of S*, using random variable X ∈ [0, 1]. Let F be a mapping form V(G*) to V(H*) obtained after rounding using X. We give an algorithm that modifies F and achieves a homomorphism f: G → H (i.e. an integral solution that satisfies S*). The algorithm deploys a shifting procedure that first uses a random variable Y to shift the images of some of the vertices of V(G*) to obtain a homomorphism f from G* to H*. Second, it applies a breadth-first search function to make f consistent on V and V'; meaning that f(u) = a_i, u ∈ V iff f(u') = b_{π(i)}, u' ∈ V'. The proof of the following theorems and de-randomization of the algorithm appear in the full version [49].

Theorem 27. There exists a randomized algorithm that modifies F and obtain a homomorphism f: G → H. Moreover, the expected cost of the homomorphism returned by this algorithm is at most 2|V(H)| · OPT.

Theorem 28. If H admits a conservative majority polymorphism, then MinHOM(H) has a (deterministic) 2|V(H)|-approximation algorithm, otherwise it is inapproximable.

Beyond majority and min-ordering (DAT-free cases)

This section offers a view of moving forward to get a dichotomy classification for constant approximability of MinHOM(H). We believe the class of DAT-free digraphs is the right boundary between the approximable cases, and the ones that do not admit any approximation.

Conjecture 29. MinHOM(H) admits a constant approximation polynomial time algorithm when H is a DAT-free digraph, otherwise, MinHOM(H) is not approximable.

For digraph D = (V, A), let D* be a bipartite digraph with partite sets V, V' where V' is a copy of V. There is an arc in D* from u ∈ V to v' ∈ V' iff uv is an arc of D. In what follows, we give a road map for solving the conjecture. Let us start off by making a connection between homomorphisms from D to a DAT-free target digraph H, and the homomorphisms from D* to H*.

Proposition 30. Let D, H be two digraphs and let D, H, L (here L are the lists) be an instance of the LHOM(H). Suppose H is DAT-free. Then H* admits a min-ordering, and LHOM(H*) is polynomial time solvable for instance D*, H* where L*(v') = {a'|a ∈ L(v)} and L*(v) = L(v) for every v ∈ V(D).

Similar to Lemmas 15 and 26, we can obtain set of constraints S* such that there is a one-to-one correspondence between homomorphisms from D to H and integer solutions of S* (details in the full version [49]). Our primary challenge would be finding a rounding
procedure to obtain a homomorphism from D to H. We believe there is a need to deploy the shift procedure in min-ordering case (Section 3), as well as, the shifting procedure in the majority case (Section 7). This essentially means obtaining a new way of solving a list homomorphism from D to H when H is a DAT-free, using the bi-partition method. The calculation should work out; yielding a constant bound between the fractional value of the LP and the integral value obtained by rounding. Notice that in the majority case the symmetry of the arcs is heavily used in our argument, whereas in the digraph case we no longer have this property in hand.

References

Toward a Dichotomy for Approximation of H-Coloring

91:16 Toward a Dichotomy for Approximation of H-Coloring

