
Hiding Communication Delays in Contention-Free
Execution for SPM-Based Multi-Core
Architectures
Benjamin Rouxel
Univ Rennes, Inria, CNRS, IRISA, France
benjamin.rouxel@irisa.fr

Stefanos Skalistis
Univ Rennes, Inria, CNRS, IRISA, France
stefanos.skalistis@irisa.fr

Steven Derrien
Univ Rennes, Inria, CNRS, IRISA, France
steven.derrien@irisa.fr

Isabelle Puaut
Univ Rennes, Inria, CNRS, IRISA, France
isabelle.puaut@irisa.fr

Abstract
Multi-core systems using ScratchPad Memories (SPMs) are attractive architectures for executing
time-critical embedded applications, because they provide both predictability and performance. In
this paper, we propose a scheduling technique that jointly selects SPM contents off-line, in such
a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to
augment hiding possibilities. Experimental results show the effectiveness of the proposed technique
on streaming applications and synthetic task-graphs. The overlapping of communications with
computations allows the length of generated schedules to be reduced by 4% on average on streaming
applications, with a maximum of 16%, and by 8% on average for synthetic task graphs. We further
show on a case study that generated schedules can be implemented with low overhead on a predictable
multi-core architecture (Kalray MPPA).

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Real-time systems

Keywords and phrases Real-time Systems, Contention-Free Scheduling, SPM multi-core architecture

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.25

Funding This work was partially supported by ARGO (http://www.argo-project.eu/), funded by
the European Commission under Horizon 2020 Research and Innovation Action, Grant Agreement
Number 688131.

1 Introduction

The race for computer performance has always been limited by the memory bottleneck.
To overcome this issue, hardware [28], software [23] and hybrid [20] prefetching methods
have been proposed in the past to bring data closer to the processor before it is needed.
However, most prefetchers are not designed for time-critical applications, where predictability
is essential.

Compared to cache-based architectures, multi-cores with a private ScratchPad Memory
(SPM) per core are a very attractive alternative for time-critical embedded applications.
Via software-managed SPMs, they offer sufficient computational power and the necessary
predictability. Software-managed SPMs enable data-movement decisions, from/to main

© Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 25; pp. 25:1–25:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7178-4768
mailto:benjamin.rouxel@irisa.fr
https://orcid.org/0000-0002-5758-3804
mailto:stefanos.skalistis@irisa.fr
mailto:steven.derrien@irisa.fr
https://orcid.org/0000-0001-9310-9651
mailto:isabelle.puaut@irisa.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
http://www.argo-project.eu/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Hiding Communication Delays in SPM-Based Multi-Cores

memory, to be scheduled at design time (off-line), thus restricting or avoiding contention on
shared resources. Examples of such architectures are the Cell multi-core architecture [19],
the academic core Patmos [32] or the Kalray MPPA [11].

Efficient and predictable management of SPMs are facilitated by application models that
offer a high-level view of parallel programs. We focus on applications modelled as directed
acyclic task-graphs (DAGs), consisting of dependent tasks that exchange data through shared
FIFO channels. In such application models, tasks are executed in three phases: 1) they read
data from their input FIFOs, 2) execute their computation, and 3) write the results to their
output FIFOs. This order of execution is in accordance with the PRedictable Execution
Model (PREM) [29, 2] and the Acquisition Execution Restitution (AER) execution model [26].
Such execution models are well-suited for SPM-based architectures, as tasks can prefetch their
input FIFOs from the shared memory into the private SPM and, after the task’s execution,
write-back the produced data to their output FIFOs. Using proper scheduling techniques,
this can result in contention-free execution. These DAGs do not necessarily need to be built
from scratch, which would require an important engineering effort. Automatic extraction of
parallelism, for instance from a high level description of applications in model based design
workflows [12], seems a much more promizing direction.

We believe that this combination of software (DAG with PREM) and hardware (SPM-
based multi-cores) is essential to build efficient and predictable systems. In this paper,
we propose a scheduling strategy that hides such delays by executing communications in
parallel with computation. Our scheduling strategy relies in advancing (resp. postponing) the
execution of read (resp. write) phase of a task such that it overlaps with the execution phase
of another task, thus hiding the communication delay. The proposed scheduling strategy
aims at minimizing the makespan of the total execution and includes an SPM allocation
strategy ensuring that there is enough space in SPM at all times. The resulting schedules
are contention-free to the shared bus, similarly to [3]. Additionally, and in comparison with
most related works (such as [30, 8, 24, 37]), we fragment communication phases to augment
communication hiding possibilities. In contrast with most other works dealing with SPM,
e.g. [13, 4], that allow some information to stay in global main memory, our SPM allocation
scheme imposes that all information accessed by a task is prefetched into SPM beforehand.
In summary, the contributions of this work are the following:
1. We propose a strategy to map and schedule a task graph onto cores coupled with an

SPM allocation scheme. The generated static contention-free non-preemptive schedules
allow, when possible, to overlap communications and computations, through non-blocking
loading/unloading of information into/from SPM. Communication phases are fragmented
to maximize the duration of overlapping between communications and computations.
The proposed strategy is formulated as a heuristic based on list-scheduling to produce
schedules very fast.

2. We provide an experimental evaluation showing our method improves the overall makespan,
up to 16%, compared to equivalent schedules generated with blocking communications.

3. We evaluate the impact of different granularities for communication fragments on the
schedule makespan.

4. We experimentally show on a use case that generated schedules can be implemented with
a low overhead on a predictable multi-core architecture (Kalray MPPA [11]).
The rest of this paper details the proposed strategy and is organized as follows. A

motivating example is presented in Section 2, as well as the assumptions made on the
hardware and software. Then, Section 3 presents the basic principles of the SPM allocation
scheme. The scheduling/mapping/allocation heuristic technique is then detailed in Section 4.
Section 5 presents experimental results, including an implementation on the Kalray MPPA
platform. Finally, Section 6 presents related works, before concluding in Section 7.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:3

2 Motivating Example and assumptions

2.1 Architecture Model
We consider multi-core architectures, where every core has access to a private dual-ported
ScratchPad memory (SPM). Cores are connected through an arbitrated bus to a global
external shared memory. Access requests are enqueued (one queue per core) and served
according to the bus arbitration policy. While in the rest of the paper, we will assume a FAIR-
round-robin arbitration [21], the proposed method is directly applicable for other policies
with arbitration based on requests (e.g. first-come-first-served, fixed priority, etc.) and not
on time (e.g. time division multiple accesses). All communications are non-preemptable and
go through the shared global memory (no SPM to SPM communication). We further assume
that the architecture supports loading of information in the dual-ported SPM, in parallel
with computations. Provided support may be a hardware Direct Memory Access (DMA)
engine or a specific core acting as a DMA software engine as in [9]. These assumptions are
met in both academic and commercial processors (e.g. Patmos [32], Kalray MPPA [11]).

Communications can be implemented in blocking mode or non-blocking mode. In blocking
mode, the CPU is in charge of transfers between SPM and the shared memory, and is then
stalled during every transfer. In non-blocking mode, transfers are managed asynchronously,
allowing the CPU to execute other jobs during memory transfers.

2.2 Application Model
We consider applications modeled as directed acyclic graphs (DAGs). A graph G is a pair
(V,E) where the vertices in V represent the application’s tasks and the edges in E represents
the data dependencies between the tasks. This work supports multiple DAGs with same period
as is, which is omitted due to space limitations. Extending our work to applications with
different periods is deemed as a rather direct transposition, by making schedule generation
operate on the hyperperiod. This extension is however left for future work.

Figure 1 An example of a task-graph.

According to the semantics defined in PREM [29, 1] or AER [26], each task is divided in
three phases, namely read, exec and write. The read phase reads/receives the mandatory
code and/or data from the main memory to the SPM, such that the exec phase can proceed
without access to the shared bus. Finally, the write phase writes the resulting data back from
the SPM to the main memory. Using such an application and execution model is central
in our method, as it allows to perform offline scheduling which precisely controls resource
contention. The exec phase of tasks does not access the shared bus, and thus contentions
when accessing the shared bus do not exist between exec phases and read/write phases; the
off-line scheduler is in charge of scheduling communication phases in such a way that they

ECRTS 2019



25:4 Hiding Communication Delays in SPM-Based Multi-Cores

do not conflict with one another; finally, the presence of a dual-ported SPM per core allows
calculations and communications to proceed in parallel, provided that they access different
address ranges.

Note that considered DAGs with read-exec-write semantics need not be built from scratch.
They can be extracted automatically either from a high-level description of applications in
model based design workflows [12], or from legacy code with [27].

As an extension to the original PREM/AER model, we split each communication into
fragments. A fragment is some division of the total amount of data that a task produces
or consumes. How the data are divided into fragments is determined by the fragmentation
scheme. The default fragmentation scheme assumed throughout this paper is to have
one fragment for each task communication (edges in the graph). Thus, instead of a task
reading/writing all of its inputs/outputs at once, it is done on a per-task basis with the size
of the fragment being as the size of the communication. Other fragmentation strategies will
be detailed in Section 5.4. A task τi is a tuple τi =< F ri , τ

e
i , F

w
i >, where τei is the exec

phase, and F ri (resp. Fwi ) is the set of fragments read (resp. written) by the task. The f -th
fragment of τi that is read (resp. written) is denoted as τ r(i,f) ∈ F

r
i (resp. τw(i,f) ∈ F

w
i ).

An example of a task-graph is illustrated in Figure 1. The figure gives for each task its
name, the Worst Case Execution Time (WCET) of its exec phase, and for each edge the
amount of data exchanged, among the tasks, in bytes. The WCET of the exec phase, denoted
Ci, can be estimated in isolation from the other tasks considering a single-core architecture,
as there is no access to the main memory (all the required data and code have been loaded
into the SPM before the task’s execution). In general, read and write fragments could suffer
from contentions caused by concurrent accesses to the shared bus, however in this paper the
proposed technique produces contention-free schedules.

Since the code in our experimental evaluation, is generally small and likely to be reused
along the execution of the application, for simplicity reasons we assume that the code is
preloaded in the SPM at startup.

For simplicity when presenting the motivational example, we will assume the SPM to be
large enough to store all information (code, data, communication buffers), this assumption
will be relaxed in Section 3.

2.3 Motivating Example
Figure 2 motivates the use of non-blocking, fragmented communications for the application
from Figure 1 assuming a dual-core architecture. Sub-figure 2b depicts the schedule obtained
using non-blocking fragmented communications, with one fragment per outgoing edge in the
graph, whereas sub-figure 2a depicts the schedule obtained using blocking communications.
For each core, the top time-line depicts the scheduling of exec phases (grey boxes) and the bot-
tom one depicts the scheduling of communications (read: white boxes, black font, write: dark
boxes, white font). The communication cost is indicated below each communication phase.

In Figure 2a (blocking mode), all parts of the same task are scheduled contiguously
on the same core, and the CPU is stalled when accessing the bus. The read and write
phases are not fragmented as it would not bring any benefit in blocking mode. Precedence
constraints are respected by ordering read phases after their preceding write phases, e.g. τ rC
is scheduled after the completion of τwA . There is no read phase for tasks A and B as they
do not have predecessors, hence no data to fetch. The resulting schedule makespan (time at
which the last task ends) is 76 time units. In Figure 2b (non-blocking mode), fragmented
communication and exec phases overlap, e.g. τ r(H,2) and τ r(H,3) overlap with τeF , thus hiding
the communication delay. Having prefetched all required data into SPM, the exec phase of
τH can start right after τF .



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:5

(a) Schedule in blocking mode (makespan of 76 time units).

(b) Schedule in non-blocking mode (makespan of 61 time units).

Figure 2 Schedules for the example task-graph on a dual-core. For each core, the top time-line
depicts the schedule of exec phases (in grey), the bottom one depicts the schedule of read (in white)
and write (in black) phases. The communication cost is indicated below each communication phase.

The gain in schedule length from Figure 2b is obtained by introducing the following
flexibilities in the scheduling of communication fragments, while respecting read-exec-write
phase’s order: 1) communication phases of different tasks can have a different order than
their respective exec phases, as long as there is no data dependencies between them, e.g.
τ r(D,1) is scheduled before τw(E,1), in reverse order compared to τeD and τeE . 2) communication
phases and exec phase of the same task, do not need to be contiguous in time, e.g. τ r(D,1)
and τeD are not. 3) communications are fragmented, a task with multiple successors does not
write all its data at once, e.g. τB has two successors, thus writing two fragments.

The last point (fragmented communications) is new compared to related work. Considering
each fragment individually allows additional overlaps between communications and task
execution that were impossible without fragmentation. In the example, it allows to hide part
of the write phase of τA, and part of the read phase of τJ , which was not possible without
fragmentation. Thus, splitting communications allows each source/sink of the task graph to
hide part of its communications. However, in the example from Figure 2b, the remaining
first part Aw (τw(A,1)) can still not be hidden, but is however smaller than in Figure 2a. The
overall makespan of the resulting schedule in non-blocking mode (Figure 2b) is 61 time units,
resulting in a gain of 20%.

3 Principle of SPM allocation scheme

In our motivational example, we assumed the SPM large enough to store all information
required to execute the entire application (code, data, communication buffers). To account
for limited SPM capacity, our scheduling strategy comes with a SPM allocation strategy
that allocates an SPM area (called hereafter region) to each communication fragment and
execution phase. Fragment-to-region mapping is performed by the scheduler off-line. However,
the same region can be used successively by different fragments, and the scheduler guarantees
that the live ranges of the concerned fragments do not overlap. Region sizes vary according
to the data stored by fragments/exec phases.

ECRTS 2019



25:6 Hiding Communication Delays in SPM-Based Multi-Cores

To isolate bus accesses from computation, we impose that all information accessed by
a task is loaded into SPM beforehand. This comes in opposition to most SPM allocation
policies that decide which information should be stored in the SPM and which information
should remain in the global main memory (e.g. [13]). Our fragment-to-region mapping is
inspired by the method proposed in [22].

The regions assigned to fragments F ri contain the input data, fetched from the main
memory, which are required by the task’s exec phase. These regions contain the data produced
by all predecessor tasks. The unique region assigned to τei contains any kind of information
used locally by the task (code, constants, local data, usually stack-allocated). The regions
assigned to Fwi contain the data produced by the task.

The size of a region obviously depends on the amount of data required by the associated
fragment (i.e. amount of data produced by a predecessor in case of a read fragment).
Considering a mapping of tasks to cores and a mapping of fragments to SPM regions, the
sum of the sizes of regions on a core must not exceed the SPM size.

Let us consider the example of Figure 2b, in which for simplicity we concentrate
on the communication fragments and ignore the execution phases. If the size of the
SPM is 1 Kbytes then on processor P2 the SPM can be partitioned in seven regions
SPM = {τw(B,1), τ

w
(B,2), τ

r
(E,1), τ

w
(E,1), τ

r
(D,1), τ

r
(G,1), τ

w
(G,1)} with respective sizes in bytes {1, 2, 1,

1, 1, 2, 5} (according to the amount of data exchanged between tasks, taken from Figure 1).
The sum of the regions’ sizes is 13 bytes, which is less than the SPM size. If we now restrict
the SPM size to 10 bytes, the previous partitioning of SPM in regions is not valid anymore.
However, once τw(B,1) is completed, the data produced by τB has been committed to the global
shared memory, therefore its assigned region can be reused. In this example, τ r(G,1) starts
after the completion of τw(B,1), as it is the case for τw(B,2) and τw(G,1). Thus, the fragments
τw(B,1),τ r(G,1) and τw(B,2),τw(G,1) can be assigned to the same SPM region, leaving a partitioning
of five regions: SPM = {{τw(B,1), τ

r
(G,1)}, {τ

w
(B,2), τ

w
(G,1)}, τ

r
(E,1), τ

w
(E,1), τ

r
(D,1)} with respective

sizes (in bytes) {max(1, 2),max(2, 5), 1, 1, 1}. The sum of all regions sizes is 10 bytes, which
can fit in the SPM.

In the example, both pairs (τw(B,1), τ
r
(G,1)) and (τw(B,2), τ

w
(G,1)) could share the same region,

because their lifespan does not overlap. On the other hand, in Figure 2b, τ r(D,1) can not share
the same region as τ r(E,1), because the data consumed by τE are in use from the start of the
read phase F rE up to the end of the execution of τeE . This leads to define the live range of
regions for each type of fragment. Definition 1 defines the live range for a region assigned to
a read fragment, while Definitions 2 and 3 give live ranges for regions assigned respectively
to an exec and a write fragment.

I Definition 1. Data fetched from the main memory by a read fragment are alive from its
start time to the end of the corresponding exec phase.

I Definition 2. Local information used by an exec phase (code, stack data area) are alive
for the whole execution time of the application.

I Definition 3. Data written back to main memory by a write fragment are alive from the
start time of the corresponding exec phase to its transmission end time.

We assume read/written data can be consumed/produced at any time in the exec phase of
the task. Therefore, the live range in Definitions 1 and 3 include the duration of the exec phase.

The scheduler maps fragments to regions, but does not decide the addresses of the
regions in the SPM, which is left to the compiler/code generator. Since the number and
size of regions is decided off-line, address assignment is straightforward, and does cause



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:7

external fragmentation. Fragmentation of the SPM can only arise inside regions (internal
fragmentation) when two (or more) phases are assigned to the same region but store different
amounts of data.

4 Joint-mapping/scheduling and SPM allocation

This section presents a heuristic algorithm based on forward list scheduling that integrates
fragmented non-blocking communication and SPM allocation. The main outcome of the
proposed algorithm is a static mapping, scheduling and SPM fragment-to-region allocation,
for a single application represented as a DAG. The objective is minimizing the overall
schedule’s makespan. The generated schedule is free from contention. According to the
terminology given in [10], the proposed scheduling techniques are partitioned, time-triggered
and non-preemptive. Schedule generation operates at task-level (as opposed to job-level as
defined in [10]).

Heuristics based on forward list scheduling first order input elements (in our specific
case exec and communication phases), then add them one by one in the schedule without
backtracking. We experimented with three topological sorting algorithms. The first algorithm
is a vanilla Depth First Search (DFS) algorithm to walk-through the task graph. Second, we
use the same DFS algorithm but we postpone read fragments to avoid too early reading that
might delay other fragments in the schedule (further details will be given when describing
Algorithm 4.1). The last algorithm is a vanilla Breath First Search (BFS) algorithm. For all
three sortings, we used the element memory footprint as tie breaking rule (larger footprint
to be scheduled first). Since no sorting algorithm consistently outperforms the others, we
generate three schedules, each resulting from one sorting algorithm, and selected the one
resulting in the shortest schedule makespan as the heuristic’s solution.

4.1 Notations and assumptions
Table 1 summarizes the notations that will be used to describe the scheduling algorithm
(sets, utility functions and constants).

Calculation of constants DELAY r(i,f) and DELAY w(i,f) requires knowledge of the bus
arbitration strategy and of concurrent accesses to the bus. The considered bus is characterized
by a maximum duration of Tslot allocated to each core in a round-robin fashion, with a
writing rate of Dslot data word per time unit. Tslot defines the duration a core is granted the
bus, and Dslot defines the amount of data transmittable in a Tslot duration. For the scope of
this paper, we generate contention-free schedules, thus no contention delay is paid, and the
duration of a data transfer of d bytes is trivially calculated by equation (1). This equation
could be refined to account for DRAM access cost, as done in [22].

delay = dd/Dslote · Tslot (1)

In the description of the scheduling algorithm, the cost for setting up non-blocking
memory transfers (DMA initialization in case of a hardware DMA engine) will not appear
explicitly and is considered included in the WCET of the exec phase. Determination of this
cost will be described in Section 5.5.

4.2 Scheduling algorithm
The scheduling algorithm is sketched in Algorithm 4.1. It uses the task graph as input,
sorts the elements to schedule (exec phases and communication fragments) to create the
list (line 2). Then a loop iterates on each element while there exists elements to schedule

ECRTS 2019



25:8 Hiding Communication Delays in SPM-Based Multi-Cores

Table 1 Notations.

Se
ts

T set of tasks
P set of processors/cores
R set of regions
F ri , F

w
i sets of τi fragments

F = F ri ∪ Fwi , ∀i ∈ T sets of all fragments from all tasks in T
Fu

nc
s i = task(f) utility to retrieve the task of a fragment,

fragment f belongs to τi

(j, q) ∈ pred((i, f)) (j, q) means τX(j,q) is a direct predecessor
of τX(i,f)

C
on

st
an

ts

SSi local (stack) data size of τei
CSi code size of τei

Ci
τi execute phase WCET computed
in isolation as stated in Section 2

Dr
(i,f), D

w
(i,f) size in bytes of τr(i,f)

DELAY r(i,f) fragment f of τi, read/write
DELAY w(i,f) latency from Equation (1)
SPMSIZEc SPM size of core c

Va
ria

bl
es

ρr(i,p), ρei , ρw(i,q) start times of τr(i,p), τei and τw(i,q)

(lines 5-20). This heuristic uses an As Soon As Possible (ASAP) strategy when mapping
an element. If the element to schedule is a communication fragment (line 8), then there is
no need to map it on a core, but it still must be scheduled to avoid interference. If it is
an exec phase, then a core is selected and the mapping with the shorter the makespan is
selected (line 15).

SPM regions can be assigned to elements (exec phases and communication fragments)
only when all of its phases are properly scheduled and mapped to a core (lines 18-20).
When scheduling the read fragments, the core mapping information is not yet available.
Additionally, when mapping the exec phase, we still do not have the information regarding
the write fragments that have not been scheduled yet. While assigning the region (lines
18-20), the exec phase goes first then the communication phases. This order is motivated to
better handle resident code in SPM and avoid SPM space to be stolen by communication
fragments. For example, if there are 5 units of free space (not assigned yet) and the exec
needs 5 units while a read/write need 2 units each. Then the task can still be mapped. The
exec phase will take the remaining free space, while the communication fragments can share
an already created, but available (in time), region (see Definitions 1 and 3).

Scheduling an element

Algorithm 4.2 sketches the method to determine the start time of the considered element
(exec phase or communication fragment). First, each element must start after its causal
predecessors (line 2) Then, lines 3-9 enforce that no exec phases overlap on the same core
and no fragments overlap on the bus. Condition at line 4 enforces the type of cur_elt and e
to be identical, and if both are exec phases then they must be mapped on the same core.
Finally, line 9 postpones cur_elt start time if overlapping with e.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:9

Algorithm 4.1: Scheduling algorithm.
Input :A task graph G and a set of processors
Output :A schedule

1 Function ListSchedule(G = (T,E), P)
2 Qready ← Topological_Sort_Elements(G)
3 Qdone← ∅
4 schedule← ∅
5 while elt ∈ Qready do
6 Qdone← Qdone ∪ {elt}
7 Qready ← Qready\{elt}

/* tmpSched contain the best schedule for the current task */
8 if elt is a read fragment ∨ elt is a write fragment then
9 Schedule_Element(Qdone, elt, null)

10 else if elt is an exec phase then
11 tmpSched← ∅ with makespan =∞
12 foreach p ∈ P do
13 copy ← schedule

/* Set τe in copy on p the earliest in the schedule */
14 Schedule_Element(Qdone, elt, p)
15 tmpSched← minmakespan(tmpSched, copy)
16 schedule← tmpSched

17 if all fragments and exec phase of τi containing elt are in Qdone then
18 Assign_Region(schedule,Qdone, τei , SSt + CSt, 0, infinity)
19 ∀f ∈ F ri ,Assign_Region(schedule,Qdone, f,Dr

(i,f), ρ
r
(i,f), ρ

e
i + Ci)

20 ∀f ∈ Fwi ,Assign_Region(schedule,Qdone, f, ρei , ρw(i,f) +DELAY w(i,f))

21 return schedule

Allocation of SPM regions

Algorithm 4.3 associates a SPM region to an element (exec phase, fragment). If there is data
to store in the SPM (line 2), then it first tries to reuse an existing region (lines 4-6), thus
minimizing the required memory size. If no existing region can be shared, then a new one is
created (lines 7-8). Sharing a region imposes that the selected region is big enough to handle
the current amount of data and free for use at the required time interval (line 4).

5 Experimental evaluation

The first presented experiments (Section 5.2) aim at validating the quality of the proposed
scheduling technique as compared to a scheduling strategy based on Integer Linear Program-
ming (ILP, see Section 5.1) that provides the optimal solution (shortest schedule makespan).
Then, we validate the benefits of hiding communications using the heuristic technique (Sec-
tion 5.3). In the above-mentioned experiments, the default fragmentation strategy (one
fragment per edge in the task graph) is used. We subsequently compare different ways to
fragment communications (Section 5.4). Finally, we show in Section 5.5 on a case study that
generated schedules can be implemented with low overhead on a Kalray MPPA platform [11].
In Sections 5.2 to 5.4, scheduler and communication implementation overheads are neglected,
but they are considered in Section 5.5.

Experiments have been conducted both on real code, in the form of the open-source
Refactored StreamIT benchmark suite STR2RTS [31] and on synthetic task graphs, generated
using Task-Graph For Free (TGFF) [14].

ECRTS 2019



25:10 Hiding Communication Delays in SPM-Based Multi-Cores

Algorithm 4.2: Scheduling of an element (exec, fragment).
Input : the list of scheduled element, the current element to schedule, the current core or

null if the element is a fragment
Output :

1 Function Schedule_Element(Qdone, cur_elt, cur_proc)
/* wct → Worst-Case Timing, DELAY αβ or Cβ */
/* X and Y depend on the type of the corresponding element */

2 ρXcur_elt ← maxp∈pred(cur_elt)(ρYp + wctp)
3 foreach e ∈ Qdone do
4 if cur_elt is a fragment and e is not a fragment
5 ∨ cur_elt is an exec phase and e is not an exec phase
6 ∨ cur_elt is an exec phase and e is not mapped on core cur_proc then
7 continue

8 if e overlaps in time with cur_elt then
9 ρXcur_elt ← ρYe + wcte

Algorithm 4.3: Allocation of a SPM region to a phase.
Input :A schedule, the list of scheduled element, the current task and properties of the

phase to map on a region
Output :A schedule

1 Function Assign_Region(schedule, Qdone, cur_elt, dataSize, start, end)
2 if data == 0 then return
3 proc← getCore(schedule, cur_elt)

/* Get the set of existing regions on core proc where : size ≥ dataSize ∧
last reservation time ends before start */

4 existing ← getExistingRegions(schedule, proc, dataSize, start)
5 if existing 6= ∅ then
6 Assign the smallest existing region to cur_elt
7 else if free SPM size in proc ≥ dataSize then

/* Create SPM region for cur_elt on proc with size data where the
reservation time is [start; end] */

8 CreateRegion(cur_elt, proc, dataSize, start, end)
9 else

10 Throw Unschedulable

The STR2RTS applications1 are modeled using fork-join graphs and come with timing
estimates for each task and amount of data exchanged between them. We did not use all the
benchmarks and applications provided in the suite as some are not parallel, they are made
of a linear chain of tasks (i.e. CFAR, FIR, ComplexFIR, FTT6), making them uninteresting
for multi-core platforms. This leaves us 18 benchmarks with 73 tasks in average and average
memory footprint of 4 KB.

The synthetic task-graphs were generated with the latest version of the TGFF generation
software. Generated task-graphs include chains of tasks with different lengths and widths,
fork-join graphs and more evolved structures (e.g. multi-DAGs). The resulting task graph
characteristics are presented in Table 2. The table includes the number of task-graphs, their

1 A table describing each used benchmark is available in the appendix.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:11

number of tasks, the maximum width of the task-graph, the range of WCET values for
each task and the range of amount of exchanged data in bytes between pairs of tasks, the
range of code size and stack size for each task, and the global ratio of WCET per amount of
exchanged data. The TGFF parameters (average and indicator of variability) are set in such
a way that the average values for task WCETs and volume of data exchanged between pairs
of tasks correspond to the analogous average values for the STR2RTS benchmarks.

Table 2 Task-graph characteristics for synthetic task-graphs.

#Task-graphs 50
#Tasks 5, 69, 22

Max. width 3, 17,8
Exchanged

data [0; 192]

WCET [5; 6000[
Code size [3; 3920[
Local size [1; 60]

Ratio WCET
data

10

All reported experiments have been conducted on several nodes from an heterogeneous
computing grid with 138 computing nodes (1700 cores). In all experiments, the duration a
core is granted the bus (Tslot) is set to 3 as in [21] and shown in [30] to have little impact on
the schedule length. The transfer rate is one word (4 bytes) per time unit.

5.1 Baseline: Integer Linear Programming scheduling
An Integer Linear Programming (ILP) formulation consists of a set of integer variables, a set
of constraints and an objective function. Constraints describe the problem to solve in the
form of linear inequalities. Solving a problem consists in finding a valuation for each variable
satisfying all constraints with the goal of minimizing/maximizing the objective function.
Table 3 summarizes the variables used in the ILP formulation. For a concise presentation of
constraints, the two logical operators ∨,∧ are directly used in the text of constraints. These
operators can be transformed into linear constraints in order to properly use ILP solvers
using simple transformation rules from [5].

Objective function

The objective is to obtain the shortest schedule, and so to minimize the makespan Θ,
Equation (2a). Equation (2b) constrains the completion time of all tasks (starting of all write
fragment ρw(i,f), plus its latency DELAY w(i,f)) to be inferior or equal to the schedule makespan.

minimize Θ (2a)
∀i ∈ T ;∀f ∈ Fwi ; ρw(i,f) +DELAY w(i,f) ≤ Θ (2b)

Problem constraints

Some basic rules of a valid schedule are expressed in the following equations. Equation (3a)
ensures the unicity of a task mapping (pi,c = 1 τi is mapped on core c). Equation (3b)
defines if two tasks are mapped on the same core (mi,j = 1). When aeei,j = 1 then τei is
scheduled before τej , thus Equation (3d) forbids an order of phases (resp. fragments) and
its reversed order to be both active but imposes to choose one; one of the aeei,j , aeej,i must
be equal to 1, but both can not be equal to 1. Equations (3e) unifies Equations (3b) and
(3d) to order exec phases only on the same core. In Equation (3d), no equation enforces

ECRTS 2019



25:12 Hiding Communication Delays in SPM-Based Multi-Cores

Table 3 ILP variables.

In
t.

va
ria

bl
es Θ schedule makespan

ρr(i,p), ρei , ρw(i,q) start times of τr(i,p), τei and τw(i,q)
spmsrcz computed size of SPM region z on core c
σ(i,f), σi spm reservation start times of τX(i,f), τei
ω(i,f), ωi spm reservation end times of τX(i,f), τei

B
in
ar
y
va
ria

bl
es

pi,c = 1 τei is mapped on core c
mi,j = 1 τei & τej are mapped on the same core
aeei,j = 1 τei is scheduled before τej (ρei ≤ ρej)

aXY(i,f),(j,g) = 1
τX(i,f) is scheduled before τY(j,g),
in the sense ρX(i,f) ≤ ρY(j,g)
XY ∈ {rr, ww, rw,wr}

amee
i,j = 1 same as aeei,j but on the same core

amXY
i,j = 1 same as aXYi,j but on the same core

XY ∈ {rr, ww, rw,wr}
spmpz,i = 1 τei is allocated to SPM region z
spmpz,(i,f) = 1 τX(i,f) is allocated to SPM region z

spmm(i,f),(j,g) = 1 τX(i,f) and τX(j,g) are assigned to the same
region (similar to mi,j)

spma(i,f),(j,g) = 1 τX(i,f) is causally before τX(j,g)
(similar to ai,j)

spmam(i,f),(j,g) = 1
τX(i,f) is causally before τX(j,g), and both
are assigned to the same region
(similar to ami,j)

to have the same ordering for exec phases as for with read phases, because the solver does
not have to chose an order between them (see Section 2). The same remark applies to exec
phases and write phases.
∀(i, j) ∈ T × T ;XY ∈ {rr, ww, rw,wr};∀f ∈ FXi ;∀g ∈ FYj ; i 6= j∑

c∈P
pi,c = 1 (3a)

mi,j =
∑
c∈P

(pi,c ∧ pj,c) and mi,j = mj,i (3b)

aeei,j + aeej,i = 1 (3c)
aXY(i,f),(j,g) + aXY(j,g),(i,f) = 1 (3d)

amee
i,j = aeei,j ∧mi,j (3e)

ρei + Ci ≤ ρej +M× (1− amee
i,j) (3f)

ρX(i,f) +DELAY X(i,f) ≤ ρ
Y
(j,g) +M× (1− aXY(i,f),(j,g)) (3g)

Equation (3f) forbids the overlapping of two exec phases when mapped on the same core
by forcing one to execute after the other. Equation (3g) forbids to have more than one active
memory transfer at a time to produce contention-free schedules. Equations (3f) and (3g) must
be activated only if the two elements are scheduled in a specific order. Thus, a nullification
method is applied by using the classical big-M notation (the big-M notation allows to force a
constraint to hold depending on a condition as further explained in [18]). The selected value
for the big-M constant is the makespan of a sequential schedule on 1 core, the sum of tasks’
WCETs and communication delays, which is the worst scenario that can arise.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:13

Read-exec-write semantics constraints

Equations (4a) and (4b) constrain the order of all phases of a task to be read phase, then
exec phase, then write phase. But, these phases will not necessarily be scheduled contiguously.
The start date of τei (ρei ) must be some time after the completion of all read fragments (start
of read fragment ρr(i,f) + latency DELAY r(i,f)). Similarly, each write fragment starts (ρw(i,f))
some time after the end of the exec phase (start of exec phase ρei + WCET Ci).
∀i ∈ T,

∀f ∈ F ri , ρei ≥ ρr(i,f) +DELAY r(i,f) (4a)

∀f ∈ Fwi , ρw(i,f) ≥ ρ
e
i + Ci (4b)

Data dependencies in the task-graph

Equation (5) enforces data dependencies by constraining all read fragments to start after the
completion of all their respective predecessors. For a read fragment its predecessor is the
write fragment of the task that produced the corresponding data.

∀i ∈ T, ∀f ∈ F ri ,∀(j, g) ∈ pred(i, f) ρw(j,g) +DELAY w(j,g) ≤ ρ
r
(i,f) (5)

Assigning SPM regions

Equations (6a) & (6b) force every element (exec phase and fragments) from τi to be mapped
on one and only one region z. Identically to [22], we initially consider the number of regions
to be equal to the number of elements (number of exec phase + number of fragments). With
the limited capacity of the SPM, the solver will then be able to minimize the number of
effectively used regions.

∀i ∈ T ;
∑
z∈R

spmpz,i = 1 (6a)

f ∈ F, i = task(f);
∑
z∈R

spmpz,(i,f) = 1 (6b)

Equations (7a) and (7b) set the size (spmsrcz) of region z on core c to be the largest
amount of data that will be stored in it. The data stored by an exec phase includes the code
size (CSt) and local data (SSt, stack data). The data stored by a read or write fragment
(DX

(i,f)) includes all data consumed (or produced) by a task from one predecessor (or one
successor). To store data into a given region of a core, both mapping variables for the region
spmpz,(i,f) and the core pi,c must be set to 1.
∀c ∈ P,∀z ∈ R,∀i ∈ T,

spmsrcz ≥ (SSi + CSi) (spmpz,i ∧ pi,c) (7a)
∀χ ∈ {r, w},∀f ∈ Fχi ; spmsrcz ≥ Dχ

(i,f) (spmpz,(i,f) ∧ pi,c) (7b)

Equation (8) limits the sum of size for each region for a core to the available SPM size.

∀c ∈ P,
∑
z∈R

spmsrcz ≤ SPMSIZEc (8)

ECRTS 2019



25:14 Hiding Communication Delays in SPM-Based Multi-Cores

Delimiting the usage time of a region by an element relies on Definitions 1, 2 and 3.
Equation (9a) sets the allocation start time σ(i,f) of τ r(i,f) to be equal to its schedule start time
and the allocation end time ω(i,f) to be the end of the corresponding exec phase. Equation
(9b) forces the lifetime of the region used by the exec phase to be the whole duration of the
schedule (recall that Θ represents the overall makespan). Equation (9c) sets the allocation
start time σ(i,f) of τw(i,f) equal to the beginning of the exec phase and the allocation end time
ω(i,f) equal to its start time.
∀i ∈ T

∀f ∈ F ri ; σ(i,f) = ρr(i,f) and ωi = ρei + Ci (9a)
σi = 0 and ωi = Θ (9b)

∀f ∈ Fwi ; σ(i,f) = ρei and ω(i,f) = ρw(i,f) +DELAY w(i,f) (9c)

Mapping elements (exec phases and communication fragments) to SPM regions is very
similar to mapping tasks on cores. Therefore, following equations (10a), (10b), (10c) and
(10d) mimic the behaviour of respectively (3b), (3d), (3e) and (3f) by replacing variables
mi,j , ai,j and ami,j with spmmi,j , spmai,j and spmami,j . As a reminder, (10a) detects if
two fragments are assigned to the same region from the same core, (10b) represents the
causality of a fragment compare to another, and (10c) represents this causality on the same
region. Finally, (10d) imposes the mutual exclusion of the reservation time.
∀(f, g) ∈ F × F, f 6= g, i = task(f), j = task(g)

spmm(i,f),(j,g) =
∑
z∈R

(mi,j ∧ spmpz,(i,f) ∧ spmpz,(j,g)) (10a)

spma(i,f) + spma(j,g) = 1 (10b)
spmam(i,f),(j,g) = spma(i,f) ∧ spmm(i,j),(j,g) (10c)
ω(i,f) ≤ σ(j,g) +M× (1− spmam(i,f),(j,g)) (10d)

5.2 Quality of the heuristic compared to the ILP
The following experiments aim at estimating the gap between makespans of schedules
generated by the heuristic opposed to the optimal solutions provided by the ILP solver.
We expect this gap to be small. Due to the intrinsic complexity of solving our scheduling
problem using ILP, we need for these experiments a large number of small task-graphs, such
that the ILP is solved in reasonable time. We thus used synthetic task graphs generated
using TGFF (see Table 2). For each graph, we varied the number of cores in {2, 4, 8, 12} and
the sizes of the SPM vary in {2KB, 4KB}. SPM sizes allow to cover three situations: 1)
all test-cases fit in the SPM (4KB size), 2) some test-cases do not entirely fit in SPM (2KB
size), 3) some test-cases are too large, hence unschedulable (2KB size, biggest benchmarks).

The ILP solver used is CPLEX v12.7.1 configured with a timeout of 24 hours. The
heuristic is implemented in C++ with a 60 minutes timeout.

Table 4 Degradation of the heuristic compared to the ILP on the synthetic task-graphs.

% of exact results degradation
(ILP only) <min,max,avg> %

68% 0%, 20%, 3%



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:15

Table 4 presents the combined results for all different configurations. First, it shows
the number of optimal (including infeasible) results the ILP solver is able to find in the
given timeout – 68%. The remaining 32% includes all other cases where the solver reaches
the timeout without neither an optimal solution nor an infeasibility verdict. Then Table 4
presents the minimum/maximum and the average degradation induced by the heuristic over
the ILP. As displayed, the average degradation is low thus showing the quality of our heuristic.

Figure 3 Average ILP solving time for all configurations per number of tasks.

Figure 3 shows that solving an ILP problem does not scale with the growing number of
tasks. In contrast, we believe that the proposed scheduling technique does, given its low
running times: for the synthetic graphs the average schedule generation times are always less
than one second, while for the SRT2RTS benchmarks (up to 340 tasks), the heuristic needs
4 minutes on average.

5.3 Blocking vs non-blocking communications
To compare the benefit of hiding communication latency, the proposed scheduling technique
must be opposed to a scheduler that does not hide it. We preferred to modify our heuristic to
implement both the blocking and non-blocking methods instead of reusing a state-of-the-art
algorithm. The main reason, as detailed in Section 6, is that related work have characteristics
that are hardly compatible with our proposal: different task model [35], SPM big enough to
store all code/data [30, 3], lack of information on SPM management [4], different interconnect
[16]. Another reason for this choice is to guarantee that the deviation between the results from
the two communication modes will not be affected by any other technical implementation
decision (e.g.: sorting algorithm).

To summarize the modifications applied to the heuristic in order to get the blocking
mode: 1) we forbid to have more than one phase active at a time (both communication and
computation as in the example of Figure 2a) 2) we do not fragment communications. We
varied the number of cores in {2, 4, 8, 12}, and the SPM sizes in {4KB, 2MB} (2MB is the
SMEM (Shared MEMory) size in one cluster of the Kalray MPPA [11]). All aforementioned
three situations regarding the SPM size are covered with these configurations. Note that
STR2RTS benchmarks are larger in term of memory space than synthetic benchmarks.
We then calculate the gain of the non-blocking mode versus the blocking mode that we
expect to be positive.

ECRTS 2019



25:16 Hiding Communication Delays in SPM-Based Multi-Cores

Figure 4 Gain of non-blocking communications over blocking on STR2RTS benchmarks per
cores/SPM configuration – avg: 4%.

Figure 4 presents the average gain per benchmark for all configurations, e.g. 2c-2MB
stands for 2-cores and SPM size of 2MB. Unfeasible configurations are denoted by the
symbol “x”. The maximum gain is 16% (FIRBank on 2 cores with 2MB SPM), whereas the
average is 4%.

Figure 4 shows that some benchmarks are unschedulable for some configurations, e.g.
FFT2 with 2c-4KB. This comes from a lack of SPM space to place all code and all data.
This might be relaxed with code pre-fetching in read phase, which is left for future work.

Lower gains are observed when the amount of parallelism is low due to the lack of
opportunity to hide communications. For example, Serpent is a chain of fork-joins containing
2 concurrent tasks only, as opposed to FIRBank which includes only one fork-join construct
with several long chains of tasks. In addition, higher gains are observed on hardware
configurations with lower number of cores – i.e. 6% on average with 2-cores as opposed to
4% with 12-cores.

Figure 5 Gain of non-blocking communications over blocking on TGFF benchmarks.

To evaluate the impact of graph shapes on gains, we experimented our heuristic technique
on synthetic task graphs, the ones used previously to validate the heuristic. In contrast to
STR2RTS graphs, that are fork-join graphs, synthetic task graphs are arbitrary directed
acyclic graphs. Results are depicted in Figure 5. We observe these graphs offer more
opportunities to hide communication, with an average gain of 8% in total.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:17

5.4 Impact of fragmentation strategy
Through the paper, we have split read/write phases according to tasks dependencies (one
fragment per edge in the task). We experimented with two more fine-grain splitting strategies:

splitting by Dslot: each fragment will fit in a Tslot bus period, each transmitting Dslot

bytes – a task transmitting 5 floats (20 bytes) with a Tslot ∗Dslot of 3∗4 bytes per request
will result to 2 fragments, generating 2 communications.
splitting by data-type unit (DTU): an application exchanging only floats will have a DTU
of 1 float (4 bytes). If a task produces 5 floats, then there is 5 fragments.

We conducted the experiments by applying our heuristic on the STR2RTS benchmarks, with
the very same experimental setup as before. We include in the comparison scheduling in
non-blocking mode without communication fragmentation (label no frag in Figure 6). We
expect the gain to increase as the fragment granularity gets smaller.

Figure 6 Average gain of non-blocking over blocking depending on fragmentation strategy.

Figure 6 presents the results with four granularities: no frag, edge (default configuration),
Dslot (12 bytes) and DTU (4 bytes). Fragmenting communications always result in shorter
schedules than the no frag configuration. In addition, in most cases the smaller granularity
results in higher gains. However the better the results are, the higher the schedule generation
time is, as given in the legend of the figure. Schedules are generated in less than 1 second
on average for no frag and edge, whereas several minutes are required on average for fine-
grain fragments.

5.5 Schedule implementation on a Kalray MPPA platform
We successfully implemented schedules generated with our heuristic targeting one cluster of a
Kalray MPPA Bostan platform [11]. The final code is largely auto-generated (only the code
of the exec phase of each task has to be inserted manually in the generated code). At the
time of writing, we managed to run benchmark BeamFormer_12ch_4b from the STR2RTS
benchmark suite [31]. Benchmark BeamFormer_12ch_4b is made of 56 tasks with a DAG
width of 12. The Kalray MPPA platform includes 16 clusters, each containing 16 cores and
a SMEM of 2MB. Four I/O clusters, containing 4 cores each, access either the off-chip global
memory or the Ethernet. Clusters are connected through a Network On Chip (NoC).

ECRTS 2019



25:18 Hiding Communication Delays in SPM-Based Multi-Cores

Following is a summary of the implementation on the Kalray MPPA. Implementation
was done at the bare metal level. The SMEM is configured in banked address mapping mode
(consecutive addresses are mapped to the same memory bank), with memory banks are split
between computing cores at compile time to have a single-bank considered as SPM per core,
as assumed in Section 2.

Data exchanges between cores and the off-chip memory walk through the architecture’s
NoC, which in our experiments is free from interferences as we only use one cluster of
the architecture2. Communications are implemented using the Kalray channel connectors
(one channel for reading, one channel for writing), kept open for the whole execution
of the application.

Each core runs one thread, in charge of implementing the schedule of exec phases generated
off-line, by interleaving a sched function between exec phases. The sched uses busy-waiting
(reads the local clock of the core to wait for tasks’ start time). The worst-case measured
overhead of the sched function due to clock reading is 32 cycles. An ad hoc protocol
using barriers is used to re-synchronize local clocks at application start. A specific core is
reserved to act as a software DMA engine and is in charge of implementing the schedule of
communications (read and write phases) determined off-line, in a contention-free manner.
Implementation of communication phases schedule is identical to the one of computation
phases. Moreover, the I/O receiving core follows the schedule to receive and store data to
the main memory or to send it to the cluster.

We were able to generate the following versions of the benchmark: 1) blocking mode
(Sbl), 2) non-blocking mode without communication fragmentation (Snbl), 3) non-blocking
mode with fragmentation by edges (Sedgenbl ), 4) non-blocking mode with fragmentation by
Dslot (12 bytes) (Sdslotnbl ), 5)non-blocking mode with fragmentation by DTU, fragment size is
one 4-bytes word (1 float) (Sdtunbl ).

In terms of implementation overheads, there is no overhead to set up the software-
implemented DMA at run-time, since channel connectors are initialized only once at ap-
plication start. The overhead of 32 cycles due to the scheduler implementation is taken
into account.

For this experiments, WCETs of computations and communications were estimated using
measurements, adding an arbitrarily chosen margin of 20% for safety. Taking into account
implementation overheads, as expected, the overall schedule makespans are: Sbl > Snbl >

Sedgenbl > Sdslotnbl . The gain of Snbl schedule over the Sbl schedule is 1%, the gain of Sedgenbl

schedule over the Snbl schedule is 36%, and the gain of Sdslotnbl over Snbl is 22%.

However, the finer fragmentation policy suffers from an overhead on this platform. The
degradation of Sdtunbl over Sedgenbl is 24%. The source of this overhead mainly originates from
read phases measured time where reading one float takes as much time as reading four floats.
Nevertheless, we observe a small decrease in write phases measured time depending on the
amount of data exchanged (approximately 1000 cycles on average).

2 Note that our abstract architecture model from Section 2 uses a bus. Using a NoC in the Kalray
MPPA only changes the overall communication delay computed in Equation 1 since the NoC is free
from contentions.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:19

6 Related work

Accessing the global shared memory has always been a performance bottleneck. To overcome
this issue, prefetching mechanisms bring information closer to the processor before it is
actually needed. Hardware prefetchers will speculatively request data or instructions based
on memory access patterns [28]. Software prefetchers give control to the developer or compiler
to introspect the code and add prefetching instructions [23]. In this paper we propose a
software prefetcher that adds prefetching based on a schedule generated off-line.

Most of other works considering SPM aim at deciding what should be stored into the
SPM and when to evict data, and in cases some information cannot be stored in SPM it
stays in main memory. Considered metrics for SPM allocation are average-case performance
[15, 25], power consumption [36], WCET [13], or schedule makespan [4]. In contrast to these
studies, our work, in order to control resource contention, requires all information to be
stored in SPM.

Wasly and Pellizzoni [38] add a hardware component, named RSMU, to manage the
SPM. This RSMU acts similarly as a Memory Management Unit (MMU), except it also
uses a previously computed schedule for loads/unloads of code/data from mixed-critical
tasks. To use our method, no specific hardware component needs to be added. Giorgi et
al. [17] introspect the code to add control of the RSMU, in order to prefetch global data
from the global external memory into a local memory on a many-core architecture. They
modified the compiler to isolate loads into specific basic blocks and added synchronization if
the mandatory data are not yet ready for use. However, their study does not include any
real-time guarantee on blocking times. We can guarantee the data will be ready for use
without blocking time.

Kim et al. [22] present an algorithm to map a function to a specific SPM region, that
inspired our phase to region mapping step. They aim at storing the basic blocks into the
SPM in order to improve the WCET of an application on a single-core. We improve their
work to map multiple tasks on multi-cores.

Cheng et al. [7] derive a speed-up factor and a resource augmentation factor when
partitioning memory banks with minimum interference. At the opposite we have a complete
off-line schedule with phase to region allocation on single bank SPM memory.

The PRedictable Execution Model (PREM) from Pellizzoni et al. [29, 1] exposes par-
allelism by splitting tasks in communication/computation phases. PREM has been widely
used – e.g. [38, 3, 39, 4] – because it increases the predictability of an application by isolating
memory accesses. Coupling this principle with a software-managed memory (SPM) drastically
improves the predictability of the application and so improves its estimated WCET. The
authors of [27] present a method to automatically adapt any application to the PREM model,
which then allows the application of any SPM load/unload technique including ours. The
studies we could find exploiting both the SPM and the PREM model usually fuse the write
phase of a task with the next activated read phase on the same core [38, 39, 2]. As opposed
to them, we follow the Acquisition-Execution-Restitution principle from [26] which adds
more freedom to schedule generation.

On a single-core, using PREM, Soliman et al. [34] hide the communication latency at
the basic-block level thanks to a modification of the LLVM compiler toolchain. Wastly and
Pellizzoni [39] proposed to dynamically co-schedule, without preemption, DMA accesses and
sporadic tasks on a SPM-based single-core. The SPM is split in 2 parts: one assigned to the
currently executing task, while the other load information for the next scheduled task. Our
work makes a better use of the SPM by allowing more than two regions alive at the same
time. This last work has been extended to multi-core in [2].

ECRTS 2019



25:20 Hiding Communication Delays in SPM-Based Multi-Cores

Rouxel et al. [30] presented a co-scheduling and mapping of computation and com-
munication phases from task-graph for multi-cores. They limited their work to blocking
communication whereas we use non-blocking ones and we fragment them to add flexibility
in the schedule. They assume an infinite SPM size, which looks to us unrealistic, therefore
we relaxed this assumption in our scheduling method. In addition, they showed that their
scheduling method with an accurate contention model exhibits similar gain and a larger
solving times than contention-free ones. Hence, we use a contention-free model in this paper.

The technique proposed in [4] generates contention-free off-line schedules with periodic
dependant tasks. Dealing with the SPM, they aim at deciding if a task should be resident
in SPM or be fetched before each execution from the global memory. Unfortunately they
do not provide information on SPM allocation, raising questions about address allocation
and SPM fragmentation. With our region allocation scheme, an SPM allocation scheme that
manages fragmentation is proposed.

A technique to hide transfers behind calculations is presented in [35]. Similarly to [39]
and [2], the SPM is split in two regions, one used by the application while the other is being
loaded. Our work differs from the work in [35] by the task model under use (dependant tasks
in our work, sporadic independent tasks in their work). Moreover, our work make better use
of SPM by allowing more than two SPM regions to be alive simultaneously.

The work presented in [16] proposes an off-line scheduling scheme for flight management
systems using a PREM-like task model. The proposed schedule avoid interferences to access
the communication medium. However, in contrast to our work, there are still interferences
in their schedule, due to communications between tasks assigned to different cores.

Other works very close to our research, such as [24, 9, 37, 33], statically schedule
applications represented by synchronous data flow graphs with some form of buffer checking.
However, they do not use the PREM/AER model like us [37, 33], and none of them fragment
the communications, which allows us to drastically increase the hiding opportunities. The
research presented in [6] proposes a feasibility test that verifies whether scratchpad memories
are large enough to contain the maximum memory backlog that may be generated by an
application modeled as a task graph. In contrast to [6], our work focuses not only on memory
usage feasibility but also on timing feasibility.

7 Conclusion

In this work, we have shown how to minimize the impact of the communication latency
when mapping/scheduling a task graph on a multi-core, by overlapping communications and
computations. We also argued this kind of technique should always be coupled with a memory
allocation scheme to guarantee the integrity of the accessed data. Thus we formulated such
allocation scheme in our scheduler. Our experimental results show that, compared to a
scenario not overlapping communications and computations, our approach improves the
schedule makespan by 4% on average on streaming application (8% on synthetic task graphs).
As future work, we plan to improve the accesses of the global main memory such as the
DRAM where the scheduler accounts for the locality in this memory. For example, the
fragments could be designed to exploit DRAM row locality and read/write switching of the
communications. In the near future, we intend to extend this work to applications integrating
multiple DAGs. Finally, we plan to strengthen our implementation on the Kalray MPPA
platform, especially on the SMEM management.



B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:21

References

1 Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multithreaded
applications on multicore systems. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

2 Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global scheduling of
real-time tasks. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2015 IEEE, pages 285–296. IEEE, 2015.

3 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core
platform. In Real-Time Systems (ECRTS), 2016 28th Euromicro Conference on, pages 14–24.
IEEE, 2016.

4 Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, and Thomas Nolte. Schedul-
ing multi-rate real-time applications on clustered many-core architectures with memory
constraints. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 560–567, January 2018. doi:10.1109/ASPDAC.2018.8297382.

5 Gerald G Brown and Robert F Dell. Formulating integer linear programs: A rogues’ gallery.
INFORMS Transactions on Education, 7(2):153–159, 2007.

6 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Memory
Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based Architectures. In 2018
IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN, USA, December 11-14,
2018, pages 312–324, 2018.

7 Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo. Memory Bank Partitioning
for Fixed-Priority Tasks in a Multi-core System. In Real-Time Systems Symposium (RTSS),
2017 IEEE, pages 209–219. IEEE, 2017.

8 Junchul Choi, Hyunok Oh, Sungchan Kim, and Soonhoi Ha. Executing synchronous dataflow
graphs on a spm-based multicore architecture. In Proceedings of the 49th Annual Design
Automation Conference, pages 664–671. ACM, 2012.

9 Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge. Stream compilation
for real-time embedded multicore systems. In Code generation and optimization, 2009. CGO
2009. International symposium on, pages 210–220. IEEE, 2009.

10 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling algorithms for
multiprocessor systems. in ACM Computing Surveys, 2011.

11 Benoît Dupont De Dinechin, Duco Van Amstel, Marc Poulhi‘es, and Guillaume Lager. Time-
critical computing on a single-chip massively parallel processor. In Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

12 Steven Derrien, Isabelle Puaut, Panayiotis Alefragis, Marcus Bednara, Harald Bucher, Clément
David, Yann Debray, Umut Durak, Imen Fassi, Christian Ferdinand, Damien Hardy, Angeliki
Kritikakou, Gerard Rauwerda, Simon Reder, Martin Sicks, Timo Stripf, Kim Sunesen, Timon
ter Braak, Nikolaos Voros, and Jürgen Becker. WCET-Aware Parallelization of Model-Based
Applications for Multi-Cores: the ARGO Approach. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2017. IEEE, 2017.

13 Jean-Francois Deverge and Isabelle Puaut. WCET-directed dynamic scratchpad memory
allocation of data. In Real-Time Systems, 2007. ECRTS’07. 19th Euromicro Conference on,
pages 179–190. IEEE, 2007.

14 Robert P Dick, David L Rhodes, and Wayne Wolf. TGFF: task graphs for free. In Proceedings of
the 6th international workshop on Hardware/software codesign, pages 97–101. IEEE Computer
Society, 1998.

15 Boubacar Diouf, Can Hantacs, Albert Cohen, "Ozcan "Ozturk, and Jens Palsberg. A decoupled
local memory allocator. ACM Transactions on Architecture and Code Optimization (TACO),
9(4):34, 2013.

ECRTS 2019

http://dx.doi.org/10.1109/ASPDAC.2018.8297382


25:22 Hiding Communication Delays in SPM-Based Multi-Cores

16 Guy Durrieu, Madeleine Faugere, Sylvain Girbal, Daniel Gracia P’erez, Claire Pagetti, and
Wolfgang Puffitsch. Predictable flight management system implementation on a multicore
processor. In Embedded Real Time Software (ERTS’14), 2014.

17 Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic. Exploiting DMA to enable non-blocking
execution in Decoupled Threaded Architecture. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–8. IEEE, 2009.

18 Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlinear Optimization, Second
Edition. Society for Industrial Mathematics, 2008.

19 James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns, Theodore R Maeurer,
and David Shippy. Introduction to the cell multiprocessor. IBM journal of Research and
Development, 49(4.5):589–604, 2005.

20 Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core Prefetching for Multicore
Processors Using Migrating Helper Threads. SIGPLAN Not., 46(3):393–404, March 2011.
doi:10.1145/1961296.1950411.

21 Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. Evaluation of resource arbitration
methods for multi-core real-time systems. In WCET, pages 1–10, 2013.

22 Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval. WCET-aware dynamic code
management on scratchpads for software-managed multicores. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 179–188. IEEE, 2014.

23 Alexander C Klaiber and Henry M Levy. An architecture for software-controlled data prefetch-
ing. In ACM SIGARCH Computer Architecture News, volume 19, pages 43–53. ACM, 1991.

24 Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In ACM SIGPLAN Notices, volume 43, pages 114–124. ACM, 2008.

25 Lian Li, Jingling Xue, and Jens Knoop. Scratchpad memory allocation for data aggregates via
interval coloring in superperfect graphs. ACM Transactions on Embedded Computing Systems
(TECS), 10(2):28, 2010.

26 Cl’audio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia P’erez. A closer look
into the aer model. In Emerging Technologies and Factory Automation (ETFA), 2016 IEEE
21st International Conference on, pages 1–8. IEEE, 2016.

27 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated software
refactoring for predictable execution on COTS embedded systems. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on,
pages 1–10. IEEE, 2014.

28 Pierre Michaud. Best-Offset Hardware Prefetching. In International Symposium on High-
Performance Computer Architecture, Barcelona, Spain, March 2016. doi:10.1109/HPCA.2016.
7446087.

29 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
269–279. IEEE, 2011.

30 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening contention delays while
scheduling parallel applications on multi-core architecture. In Embedded Software (EMSOFT),
2017 International Conference on. ACM, 2017.

31 Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored StreamIT Benchmarks into
Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-Time Scheduling.
In Jan Reineke, editor, 17th International Workshop on Worst-Case Execution Time Analysis
(WCET 2017), volume 57 of OpenAccess Series in Informatics (OASIcs), pages 1–12, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
WCET.2017.1.

32 Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel Prokesch.
Patmos reference handbook. Technical University of Denmark, Tech. Rep, 2015.

http://dx.doi.org/10.1145/1961296.1950411
http://dx.doi.org/10.1109/HPCA.2016.7446087
http://dx.doi.org/10.1109/HPCA.2016.7446087
http://dx.doi.org/10.4230/OASIcs.WCET.2017.1
http://dx.doi.org/10.4230/OASIcs.WCET.2017.1


B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut 25:23

33 Stefanos Skalistis and Alena Simalatsar. Near-optimal deployment of dataflow applications
on many-core platforms with real-time guarantees. In 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 752–757. IEEE, 2017.

34 Muhammad Refaat Soliman and Rodolfo Pellizzoni. WCET-Driven Dynamic Data Scratchpad
Management With Compiler-Directed Prefetching. In Marko Bertogna, editor, 29th Eur-
omicro Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 24:1–24:23, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2017.24.

35 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak, Rodolfo
Pellizzoni, and Marco Caccamo. A real-time scratchpad-centric os for multi-core embedded
systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016
IEEE, pages 1–11. IEEE, 2016.

36 Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada. Partitioning and allocation of
scratch-pad memory for priority-based preemptive multi-task systems. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2010, pages 1124–1129. IEEE, 2010.

37 Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. Many-core
scheduling of data parallel applications using SMT solvers. In Digital System Design (DSD),
2014 17th Euromicro Conference on, pages 615–622. IEEE, 2014.

38 Saud Wasly and Rodolfo Pellizzoni. A dynamic scratchpad memory unit for predictable real-
time embedded systems. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference
on, pages 183–192. IEEE, 2013.

39 Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority scheduling. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th,
pages 75–86. IEEE, 2014.

ECRTS 2019

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.24


25:24 Hiding Communication Delays in SPM-Based Multi-Cores

A STR2RTS benchmark suite

Following Table 5 characterise the used benchmarks from STR2RTS benchmark suite. The
first column presents the number of tasks and the second column the width of the graph.
Then it gives the average data in bytes sent along all edges. Following is the average memory
footprint of all tasks withing a benchmark, it includes the code size and the stack size. Last
column shows the average, among all tasks, of WCET estimates. All this information are
shipped with the benchmark suite and target a Patmos single core architecture [32].

Table 5 Benchmarks characteristics.

Name #
Ta

sk
s

W
id
th

av
g
da

ta
(b
yt
es
)

av
g
ta
sk
’s

m
em

or
y
fo
ot
pr
in
t

av
g
ta
sk
’s

W
C
E
T

Audiobeam 20 15 12 B 108 B 41
Beamformer 56 12 18 B 246 B 2718
BitonicSort 122 8 49 B 109 B 30
DCTverify 7 2 513 B 506 B 10045
FFT2 26 2 551 B 2 KB 618
FFT3 82 16 84 B 208 B 120
FFT4 10 2 6 B 32 B 11
FFT5 115 16 52 B 1 KB 38
Firbank 340 12 505 B 2 KB 670
FMRadio 67 20 6 B 191 B 235
FilterbankNew 53 8 35 B 180 B 144
MP3 116 36 3502 B 19 KB 12222
MatrixMultiBlock 23 2 793 B 1 KB 726
Serpent 234 2 1013 B 709 B 922
dcalc 84 4 106 B 685 B 174
IDCTcompare 13 3 454 B 685 B 4557
perftest 16 4 8267 B 21 KB 5269
tde_pp 55 2 25344 B 16 KB 2931


