
Semantic Patches for Java Program Transformation:
(Artifact)
Hong Jin Kang
School of Information Systems, Singapore Management University, Singapore
hjkang.2018@phdis.smu.edu.sg

Ferdian Thung
School of Information Systems, Singapore Management University, Singapore
ferdiant.2013@phdis.smu.edu.sg

Julia Lawall
Sorbonne Université/Inria/LIP6, France
Julia.Lawall@lip6.fr,

Gilles Muller
Sorbonne Université/Inria/LIP6, France
Gilles.Muller@lip6.fr

Lingxiao Jiang
School of Information Systems, Singapore Management University, Singapore
lxjiang@smu.edu.sg

David Lo
School of Information Systems, Singapore Management University, Singapore
davidlo@smu.edu.sg

Abstract
The program transformation tool Coccinelle is de-
signed for making changes that is required in many
locations within a software project. It has been
shown to be useful for C code and has been been
adopted for use in the Linux kernel by many de-
velopers. Over 6000 commits mentioning the use of
Coccinelle have been made in the Linux kernel.

Our artifact, Coccinelle4J, is an extension to

Coccinelle in order for it to apply program trans-
formations to Java source code. This artifact accom-
panies our experience report "Semantic Patches for
Java Program Transformation", in which we show
a case study of applying code transformations to
upgrade usage of deprecated Android API methods
to replacement API methods.

2012 ACM Subject Classification Software and its engineering → Software notations and tools
Keywords and phrases Java, semantic patches, automatic program transformation,
Digital Object Identifier 10.4230/DARTS.VOL.ISS.ART

Related Article Hong Jin Kang, Ferdian Thung, Julia Lawall, Giles Muller, Lingxiao Jiang, David Lo,
“Semantic Patches for Java Program Transformation”, in Proceedings of the 32nd European Conference
on Object-Oriented Programming (ECOOP 2018)

1 Scope1

In this document, instructions to set up Coccinelle4J are provided. Furthermore, we provide2

a selection of semantic patches that can be applied by Coccinelle4J to source code extracted3

from real-world Java projects. These semantic patches are written in SmPL, a scripting language4

provided by Coccinelle.5

2 Content6

The artifact package includes:7

© Hong Jin Kang, Ferdian Thung, Julia Lawall, Giles Muller, Lingxiao Jiang, David Lo;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. VOL, Issue ISS, Artifact No. ART NO., pp. ART:1–ART:5
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjkang.2018@phdis.smu.edu.sg
mailto:ferdiant.2013@phdis.smu.edu.sg
mailto:Julia.Lawall@lip6.fr,
mailto:Gilles.Muller@lip6.fr
mailto:lxjiang@smu.edu.sg
mailto:davidlo@smu.edu.sg
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

XX:2 Semantic Patches for Java Program Transformation: (Artifact)

a Dockerfile to build the Docker image coccinelle4j/coccinelle4j8

this document that provides instructions on how to run Coccinelle4J9

Coccinelle4J’s source code10

The examples described in the experience report. For each example, we include11

semantic patch specified in SmPL12

some .java source files extracted from real-world Java projects13

output of each semantic patch after applying it with Coccinelle4J14

3 Getting the artifact15

There are two methods to set up Coccinelle4J. To minimize setup problems, it is preferable to use16

the first method using Docker.17

3.1 Docker18

A Docker image is similar to a virtual machine image, simplifying the set up of a project’s19

environment. However, unlike a virtual machine, Docker containers are lightweight, sharing the20

operating system’s kernel with the host machine.21

We use Docker to run Coccinelle4J in a container so that the dependencies of Coccinelle4J can22

be installed in an environment isolated from the rest of the machine. We provide a Docker image23

coccinelle4j/coccinelle4j:ecoop to easily set up containers that already have Coccinelle4J24

installed. This image also contains the examples described in the experience report.25

The instructions to install Docker varies between operating systems and can be found on the26

official Docker document at https://docs.docker.com/install/overview/.27

With Docker installed, the following commands can be executed to create a container based28

on our Docker image. We have uploaded the image at DockerHub and Docker will automatically29

fetch the coccinelle4j image from DockerHub. This image is approximately 3.54GB.30

31
docker pull coccinelle4j / coccinelle4j :ecoop32

docker run -it coccinelle4j / coccinelle4j :ecoop /bin/bash3334

The command will start a new container of the coccinelle4j image and run bash on it. On35

some machines, executing the above commands as root may be required. Next, the instructions to36

run the examples are in Section 3.3.37

3.2 Make38

If Docker is unavailable, an alternative to set up Coccinelle4J is to build the Coccinelle4J executable39

using make. OCaml (with a version >4.04), git, autoconf, make should be installed first.40

41
git clone https :// github .com/ kanghj / coccinelle42

cd coccinelle43

git checkout java44

./ autogen && ./ configure45

make && sudo make install4647

3.3 Instructions for running examples48

In our paper, we provided 7 examples of deprecated Android API methods, and show semantic49

patches that can be used to migrate them to their corresponding replacement API methods.50

https://docs.docker.com/install/overview/

H. J. Kang et al. XX:3

We provide these examples both in the docker image and in the git repository hosted at https:51

//github.com/kanghj/coccinelle.52

Each example is contained in sub-directory in the ecoop_example_patches directory. Every53

sub-directory consists of the semantic patch (a .cocci file) and examples of source code (.java54

files) that the semantic patch will be matched on. Some sub-directories may contain a file with55

isomorphisms that we extracted from the Java projects the source files were taken from. More56

details about each example are described in the experience report.57

To apply the semantic patches on the source file, the spatch command can be executed within58

each sub-directory. For the first example of replacing sendStickyBroadcasts, corresponding to59

Listing 11 in the experience report, the following command can be run.60

cd ecoop_example_patches/sticky_broadcasts61

spatch --sp-file sticky_broadcasts.cocci FileDownloader.java62

The first example can be found in the sticky_broadcasts directory (which is under the63

directory ecoop_example_patches/). spatch takes a semantic patch (in this case,64

sticky_broadcasts.cocci, specified with the –sp-file argument) and source files (in this case,65

FileDownloader.java) as input. By default, the patch generated by Coccinelle4J is printed to66

standard output. If it is desirable for Coccinelle4J to modify the source file directly, the -in_place67

flag can be passed to spatch. Apart from the patch generated, Coccinelle4J will print other details68

to standard output. For example, Coccinelle4j will print a list of files that it skipped. These files69

are skipped because they do not contain tokens neccessary for a successful match against the70

semantic patch.71

For the example of sticky_broadcasts.cocci, Coccinelle4J produces the following output72

(printed to standard output) after the command above is executed.73

74
HANDLING: FileDownloader . java75

d i f f =76

−−− FileDownloader . java77

+++ /tmp/ cocc i−output−4196−ae14a8−FileDownloader . java78

@@ −677 ,7 +677 ,7 @@ pub l i c c l a s s Fi leDownloader extends Serv79

end . putExtra (EXTRA_LINKED_TO_PATH, unlinkedFromRemotePath) ;80

}81

end . setPackage (getPackageName ()) ;82

− sendSt ickyBroadcast (end) ;83

+ sendBroadcast (end) ;84

}85

86

87

@@ −695 ,7 +695 ,7 @@ pub l i c c l a s s Fi leDownloader extends Serv88

added . putExtra (EXTRA_FILE_PATH, download . getSavePath ()) ;89

added . putExtra (EXTRA_LINKED_TO_PATH, linkedToRemotePath) ;90

added . setPackage (getPackageName ()) ;91

− sendSt ickyBroadcast (added) ;92

+ sendBroadcast (added) ;93

}94

95

/∗∗9697

The instructions to apply the semantic patches for the other examples are as follows. From the98

set_text_size directory, run the following command. This applies the semantic patch described in99

Listing 13 in the experience report. The –iso option passes in a file containing isomorphisms for100

the project.101

DARTS

https://github.com/kanghj/coccinelle
https://github.com/kanghj/coccinelle
https://github.com/kanghj/coccinelle

XX:4 Semantic Patches for Java Program Transformation: (Artifact)

spatch --sp-file set_text_size.cocci \102

--iso lucid_browser.iso CustomWebView.java103

From the get_color directory, run the following command. This applies the semantic patch104

described in Listing 17 in the experience report.105

spatch --sp-file get_color.cocci PushNotifications.java106

From the should_vibrate directory, run the following command. This applies the semantic107

patch described in Listing 19 in the experience report.108

spatch --sp-file should_vibrate.cocci IncomingRinger.java109

From the get_height directory, run the following command. This applies the semantic patch110

described in Listing 22 in the experience report.111

spatch --sp-file get_height.cocci TouchUtils.java112

From the on_console_message directory, run the following command. This applies the semantic113

patch described in Listing 25 in the experience report.114

spatch --sp-file on_console_message.cocci ViewFileFragment.java115

From the get_drawable directory, run the following command. This applies the semantic patch116

described in Listing 26 in the experience report.117

spatch --sp-file get_drawable.cocci \118

DisplayUtils.java SimpleListItemDividerDecoration.java119

In total, 7 examples are provided. A script run_examples.sh that runs all the examples is120

included in the ecoop_example_patches/ directory. Instead of manually running each example121

one by one, executing run_examples.sh will apply all the semantic patches mentioned above on122

the examples and write them into output.patch in each directory.123

3.4 Running Coccinelle4J on an entire project124

We provide examples to run Coccinelle4J on entire projects. Each directory contains a script125

(download_project.sh) to download a project that a patch can be run on, and checks out the126

version of the project used in our experience report.127

Run the following command in the root of the ecoop_example_patches directory to clone128

the projects. This command will clone the relevant projects into the directories containing the129

example patches.130

./download_all_projects.sh131

Run the following command in the root of the ecoop_example_patches directory to run the132

semantic patches on the projects. This produces a project.patch file in every directory under133

ecoop_example_patches, excluding get_drawable. We omit running get_drawable.cocci since134

it was used an example only to demonstrate the limitations of Coccinelle4J in our experience135

report. The project.patch files contains all the additions and deletions Coccinelle4J generated136

for each project.137

./run_examples_on_entire_projects.sh138

H. J. Kang et al. XX:5

To count the number of lines in a semantic path, grep is used. For example, the following139

command can be executed (in the sticky_broadcasts directory) to count the number of non-empty140

lines in the sticky_broadcasts.cocci.141

grep -cve "^\s*$" sticky_broadcasts.cocci142

To count the number of additions and deletions in the diff generated by Coccinelle4J, the143

following command can be executed. The command looks for lines starting with "-" or "+" in the144

diff. This command should be run in any of the directories (e.g. sticky_broadcasts)145

grep -ce "^[-+]\s" project.patch146

A similar command can be used to count the number of files modified by Coccinelle4J.147

grep -ce "diff" project.patch148

For an alternative to executing the commands above for counting the number of lines/files in149

the semantic patch or the patch generated by Coccinelle4J, a convenience script print_data.sh150

can be used instead.151

4 Tested platforms152

In general, Coccinelle4J is supported on any Unix-like platform. The Docker image we have153

provided should work on any platform supporting Docker.154

5 License155

The artifact is available under GNU GPL version 2.156

6 Size of the artifact157

The size of the zip file is 101.1MB. The size of the docker image is about 3.5GB158

DARTS

	Scope
	Content
	Getting the artifact
	Docker
	Make
	Instructions for running examples
	Running Coccinelle4J on an entire project

	Tested platforms
	License
	Size of the artifact

