
Revisiting Local Time Semantics for Networks of
Timed Automata
R. Govind
Chennai Mathematical Institute, India
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
govindr@cmi.ac.in

Frédéric Herbreteau
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
fh@labri.fr

B. Srivathsan
Chennai Mathematical Institute, India
sri@cmi.ac.in

Igor Walukiewicz
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
igw@labri.fr

Abstract
We investigate a zone based approach for the reachability problem in timed automata. The challenge
is to alleviate the size explosion of the search space when considering networks of timed automata
working in parallel. In the timed setting this explosion is particularly visible as even different
interleavings of local actions of processes may lead to different zones. Salah et al. in 2006 have
shown that the union of all these different zones is also a zone. This observation was used in an
algorithm which from time to time detects and aggregates these zones into a single zone.

We show that such aggregated zones can be calculated more efficiently using the local time
semantics and the related notion of local zones proposed by Bengtsson et al. in 1998. Next, we point
out a flaw in the existing method to ensure termination of the local zone graph computation. We fix
this with a new algorithm that builds the local zone graph and uses abstraction techniques over
(standard) zones for termination. We evaluate our algorithm on standard examples. On various
examples, we observe an order of magnitude decrease in the search space. On the other examples,
the algorithm performs like the standard zone algorithm.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Timed automata, verification, local-time semantics, abstraction

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.16

Related Version A full version of this paper is available at [10], http://arxiv.org/abs/1907.02296.

Funding Work supported by UMI 2000 ReLaX, ANR project TickTac, and project IoTTTA –
CEFIPRA Indo-French program in ICST – DST/CNRS ref. 2016-01. Author B. Srivathsan is
partially funded by grants from Infosys Foundation, India and Tata Consultancy Services, India.

1 Introduction

Timed automata [1] are a popular model for real-time systems. They extend finite state
automata with real valued variables called clocks. Constraints on clock values can be used as
guards for transitions, and clocks can be reset to zero during transitions. Often, it is more
natural to use a network of timed automata which operate concurrently and synchronize on
joint actions. We study the reachability problem for networks of timed automata: given a
state of the timed automaton network, is there a run from the initial state to the given state.

© R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:govindr@cmi.ac.in
mailto:fh@labri.fr
mailto:sri@cmi.ac.in
mailto:igw@labri.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2019.16
http://arxiv.org/abs/1907.02296
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Revisiting Local Time Semantics for Networks of Timed Automata

p0

p1

q0

q1

a
{x}

b
{y}

A1 A2

t ≥ 0
x̃ = ỹ = 0

t ≥ x̃
x̃ ≥ ỹ = 0

t ≥ ỹ
ỹ ≥ x̃ = 0

t ≥ ỹ
ỹ ≥ x̃ ≥ 0

t ≥ x̃
x̃ ≥ ỹ ≥ 0

a b

b a

t1 ≥ x̃ = 0
t2 ≥ ỹ = 0

t1 ≥ x̃ ≥ 0
t2 ≥ ỹ = 0

t1 ≥ x̃ = 0
t2 ≥ ỹ ≥ 0

t1 ≥ x̃ ≥ 0
t2 ≥ ỹ ≥ 0

a b

b a

Network 〈A1, A2〉 Global zone graph Local zone graph

Figure 1 Illustration of commutativity in the local zone graph.

A widely used technique to solve the reachability problem constructs a zone graph [7]
whose nodes are (state, zone) pairs consisting of a state of the automaton and a zone
representing a set of clock valuations [8]. This graph may not be finite, so in order to
guarantee termination of an exploration algorithm, various sound and complete abstraction
techniques are used [7, 2, 12, 9].

Dealing with automata operating in parallel poses the usual state-space explosion problem
arising due to different interleavings. Consider an example of a network with two processes
in Figure 1. Actions a and b are local to each process. Variables x, y are clocks and {x}
denotes that clock x is reset in transition a. The (global) zone graph maintains the set of
configurations reached after each sequence of actions. Although a and b are local actions,
there is an intrinsic dependence between the two processes happening due to time. Hence,
the zone reached after executing sequence ab contains configurations where x is reset before
y and the zone after ba contains configurations where y is reset before x. So the sequences
ab and ba lead to different zones. The number of different interleavings of sequences of local
actions increases exponentially when their length grows, or when more processes get involved.
Every interleaving can potentially lead to a different zone.

Salah et al. [17] have shown a surprising property that the union of all zones reached
by the interleavings of a sequence of actions is also a zone. We call it an aggregated zone.
Their argument is based on the fact that for a given sequence one can write a zone-like
constraint defining all the runs on the interleavings of the sequence. Then the aggregated
zone is obtained simply by projecting this big constraint on relevant components. This
approach requires to work with sets of constraints whose size grows with the length of a
sequence. This is both inefficient and limited to finite sequences. They use this observation
in an algorithm where, when all the interleavings of a sequence σ have been explored, the
resulting zones are aggregated to a single zone and further exploration is restricted to this
aggregated zone. This requires detecting from time to time whether aggregation can happen.
This is an obstacle in using aggregated zones in efficient reachability-checking algorithms.
Another limitation of this approach is that it works only for acyclic automata.

Another approach by Bengtsson et al. [4] involves making time local to each process. This
local time approach is based on a very elegant idea: make time in every process progress
independently, and synchronize local times of processes when they need to perform a common
action. In consequence, the semantics has the desired property: two actions whose process
domains are disjoint are commutative. In the example above, depending on the local time in
processes A1 and A2, the sequence ab may result, on a global time scale, in a occurring before
b, as well as b occurring before a. As a result, the set of valuations reached after ab does not
remember the order in which a and b occurred. Thus, sequences ab and ba lead to the same
set of configurations: those obtained after doing a and b concurrently. Similar to standard
zones, we now have local zones and a local zone graph having (state, local zone) pairs. Due



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:3

to the above argument, the local zone graph has a nice property – if a run σ from an initial
zone reaches a local zone, then all the runs equivalent to σ lead to the same local zone.
Local zone graphs are therefore ideal for handling interleavings. However, substantially more
involved abstraction techniques are needed for local zones to make the local zone graph finite.
A subsumption relation between local zones was defined in [4] but no algorithm was proposed
and there was no effective way to use local time semantics. Later Minea [15] proposed a
widening operator on local zones to construct finite local zone graphs.

Summary of results in the paper:
We show that the aggregated zone of interleavings of σ in the standard zone graph is
obtained by synchronizing valuations in the local zone obtained after σ (Theorem 18).
Hence computing the local zone graph gives a more direct and efficient algorithm than
Salah et al. to compute aggregated zones. Moreover, this algorithm is not restricted to
acyclic timed automata.
We point out a flaw in the abstraction procedure of Minea to get a finite local zone graph
(Section 5).
We propose a different algorithm to get a finite local zone graph. This gives a new
reachability algorithm for networks of timed automata, which works with local zones
but uses subsumption on standard zones (Definition 19 and Theorem 20). Instead
of subsumptions between local zones, we use subsumptions between the synchronized
valuations inside these local zones. This helps us to exploit the (well-studied) subsumptions
over standard zones [7, 2, 12, 9]. Moreover, this subsumption is much more aggressive
than the standard one since, thanks to local-time semantics, the (aggregated) zone used
in the subsumption represents all the valuations reachable not only by the execution that
we are exploring but also by all the executions equivalent to it.
We report on experiments performed with a prototype implementation of the algorithm
(Table 1). The algorithm performs surprisingly well on some examples, and it is never
worse than the standard zone graph algorithm.

Related work. The basis of this work is local-time semantics and local zones developed by
Bengtsson et. al. [4]. The authors have left open how to use this semantics to effectively
compute the local zone graph since no efficient procedure was provided to ensure its finiteness.
To that purpose, Minea [16, 15] has proposed a subsumption operation on local zones, and
an algorithm using this operation. Unfortunately, as we exhibit here, the algorithm has a
flaw that is not evident to repair. Lugiez et. al. [14] also use local time but their method is
different. They use constraints to check if local clocks of an execution can be synchronized
sufficiently to obtain a standard run.

Aggregated zones are crucial to obtain an efficient verification procedure for networks of
timed automata. Coming to the same state with different zones inflicts a huge blowup in the
zone graph, since the same paths are explored independently from each of these zones. This
has also been observed in the context of multi-threaded program verification in [18]. Solving
this problem in the context of program analysis requires to over approximate the aggregated
state. Fortunately, in the context of timed automata, the result of aggregating these zones in
still a zone [17]. Efficient computation of aggregated zones is thus an important advance in
timed automata verification as demonstrated by our experimental results in Section 6. A full
version of this paper is available at [10].

CONCUR 2019



16:4 Revisiting Local Time Semantics for Networks of Timed Automata

2 Networks of timed automata

We start by defining networks of timed automata and two semantics for them: a global-time
semantics (the usual one) and a local-time semantics (introduced in [4]). Then, we recall the
fact that they are equivalent, and state some interesting properties of local-time semantics
w.r.t. concurrency that were observed in [4]. Let N denote the set of natural numbers and
R≥0 the set of non-negative reals. Let X be a finite set of variables called clocks. Let φ(X)
denote a set of clock constraints generated by the following grammar: φ := x ∼ c | φ ∧ φ
where x ∈ X, c ∈ N, and ∼ ∈ {<,≤,=,≥, >}.

I Definition 1 (Network of timed automata). A network of timed automata with k processes,
is a k-tuple of timed automata A1, . . . , Ak. Each process Ap = 〈Qp,Σp, Xp, q

init
p , Tp〉 has a

finite set of states Qp, a finite alphabet of actions Σp, a finite set of clocks Xp, an initial
state qinit

p , and transitions Tp ⊆ Σp ×Qp × φ(Xp)× 2Xp ×Qp. We require that the sets of
states, and the sets of clocks are pairwise disjoint: Qp1 ∩Qp2 = ∅, and Xp1 ∩Xp2 = ∅ for
p1 6= p2. We write Proc for the set of all processes.

A network is a parallel composition of timed automata. Its semantics is that of the timed
automaton obtained as the “synchronized product” of the processes. For an action b, a
b-transition of a process p is an element of Tp with b in the first component. Synchronization
happens on two levels: (i) via time that advances the same way in all the processes, and (ii)
via common actions, for example if b ∈ Σ1 ∩ Σ2, then processes 1 and 2 need to synchronize
by doing a b-transition. We define the domain of an action b: dom(b) = {p : b ∈ Σp} as the
set of processes that must synchronize to do b. We will use some abbreviations: Q = Πk

p=1Qp,
Σ =

⋃k
p=1 Σp and X =

⋃k
p=1Xp.

The semantics of a network is governed by the value of clocks at each instant. We choose
to represent these values using offsets as this allows a uniform presentation of the global-time
semantics below and the local-time semantics in Section 2.1. For every clock x, we introduce
an offset variable x̃. The value of x̃ is the time-stamp at which x was last reset. In addition,
we consider a variable t which tracks the global time: essentially t is a clock that is never
reset. We now make this notion precise. Let X̃p = {x̃ | x ∈ Xp} and X̃ =

⋃k
p=1 X̃p. A global

valuation v is a function v : X̃ ∪ {t} 7→ R≥0 such that v(t) ≥ v(x̃) for all variables x̃. In this
representation, the value of clock x corresponds to v(t)− v(x̃), denoted v(x)1.

Recall that offset variable x̃ stores the last time-stamp at which clock x has been reset.
Hence, a delay in offset representation increases the value of reference clock t and leaves offset
variables x̃ unchanged. Formally: for δ ∈ R≥0, we denote by v + δ the valuation defined by:
(v + δ)(t) = v(t) + δ and (v + δ)(x̃) = v(x̃) for all x̃. Similarly, resetting the clocks in R ⊆ X,
yields a global valuation [R]v defined by: ([R]v)(t) = v(t), and ([R]v)(x̃) is v(t) if x ∈ R, and
v(x̃) otherwise. Given a global valuation v and a clock constraint g, we write v |= g if every
constraint in g holds after replacing x with its value v(x) = v(t)− v(x̃).

A configuration of the network is a pair (q, v) where q ∈ Q is a global state, and v is a
global valuation. We will write q(p) to refer to the p-th component of the state q.

I Definition 2 (Global-time semantics). The semantics of a network N is given by a transition
system whose states are configurations (q, v). The initial configuration is (qinit , vinit) where
qinit(p) = qinit

p is the tuple of initial states, and vinit(y) = 0 for y ∈ X̃ ∪ {t}.

1 Usually, semantics of timed automata is described using valuations of the form v. Here, we have chosen
v which uses offsets since it extends naturally to the local-time setting. Translations between these two
kinds of valuations is straightforward, as shown.



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:5

There are two kinds of transitions, which we call steps: global delay, and action steps. A
global delay by the amount δ ∈ R≥0 gives a step (q, v) δ==⇒st (q, v + δ). An action step on
action b gives (q, v) b==⇒st (q′, v′) if there is a set of b-transitions {(qp, gp, Rp, q′p)}p∈dom(b) of
the respective processes such that:

processes from dom(b) change states: qp = q(p), q′p = q′(p), for p ∈ dom(b), and
q(p) = q′(p) for p 6∈ dom(b);
all the guards are satisfied: v � gp, for p ∈ dom(b);
all resets are performed: v′ = [

⋃
p∈dom(b)Rp]v;

A run of an automaton from a configuration (q0, v0) is a sequence of steps starting in
(q0, v0). For a sequence u = b1 . . . bn of actions, we write (q0, v0) u==⇒ (qn, v′n) if there is a run

(q0, v0) δ0==⇒st (q0, v
′
0) b1==⇒st (q1, v1) δ1==⇒st (q1, v

′
1) . . . bn==⇒st (qn, vn) δn==⇒st (qn, v′n)

for some delays δ0, . . . , δn ∈ R≥0.

I Definition 3 (Reachability problem). The reachability problem is to decide, given a network
N and a state q, whether there is a run reaching q; or in other words, whether there exists a
sequence of transitions u such that (qinit , vinit) u==⇒ (q, v) for some valuation v.

The reachability problem for networks of timed automata is Pspace-complete [1].

2.1 Local-time semantics
The definition of a network of automata suggests an independence relation between actions:
a pair of actions with disjoint domains (i.e. involving distinct processes) should commute.
We say that two sequences of actions are equivalent, written u ∼ w if one can be obtained
from the other by repeatedly permuting adjacent actions with disjoint domains.

I Lemma 4. For two equivalent sequences u ∼ w: if there are two runs (q, v) u==⇒ (qu, vu),
and (q, v) w==⇒ (qw, vw) then qu = qw.

Observe that in the above lemma we cannot assert that vu = vw. Even further, the
existence of (q, v) u==⇒ (qu, vu) does not imply that a run from (q, v) on w is feasible. This
happens due to global time delays, i.e., delays that involve all the processes. For example,
consider actions a and b on disjoint processes with a having guard x ≤ 1 and b having guard
y ≥ 2. Then from the initial valuation one can execute ab but not ba.

One solution to get commutativity between actions with disjoint domains is to consider
local-time semantics [4]. In this semantics, time elapses independently in every process, and
time elapse is synchronized before executing a synchronized action. This way, two actions
with disjoint domains become commutative. In the example from the previous paragraph,
while the process executing b elapses 2 time units, the other process is allowed to not elapse
time at all and hence ba becomes possible. Moreover, for the reachability problem, local-time
semantics is equivalent to the standard one.

In the local-time semantics, we replace the clock t which was tracking the global time,
with individual reference clocks tp for each process Ap which track the local time of each
process. We set X̃ ′p = X̃p ∪ {tp} and X̃ ′ =

⋃
p X̃
′
p. A local valuation v is a valuation over the

set of clocks X̃ ′ such that v(tp) ≥ v(x̃) for all processes p ∈ Proc and all clocks x̃ ∈ X̃p. This
restriction captures the intuition that tp is a reference clock for process p, and it is never
reset. In this setting, the value v(tp) − v(x̃) of clock x is defined relative to the reference
clock tp of process p that owns x, i.e. x ∈ Xp. We will use the notation v for local valuations
to distinguish from global valuations v.

CONCUR 2019



16:6 Revisiting Local Time Semantics for Networks of Timed Automata

We introduce a new operation of local time elapse. For a process p ∈ Proc and δ ∈ R≥0,
operation v +p δ adds δ to v(tp), the value of the reference clock tp of process p, and leaves
the other variables unchanged. Formally, (v +p δ)(tp) = v(tp) + δ and (v +p δ)(y) = v(y) for
all y ∈ X̃ ′ \ {tp}. A local valuation v satisfies a clock constraint g, denoted v |= g if every
constraint in g holds after replacing x by its value v(tp)− v(x̃) where p is the process such
that x ∈ Xp. We denote by [R]v the valuation obtained after resetting the clocks in R ⊆ X
and defined by: ([R]v)(tp) = v(tp) for every reference clock tp, ([R]v)(x̃) = v(x̃) if x 6∈ R, and
([R]v)(x̃) = v(tp) if x ∈ R and p is the process such that x ∈ Xp.

I Definition 5 (Local steps of a timed automata network). There are two kinds of local steps
in a network N : local delay, and local action. A local delay δ ∈ R≥0 in process p ∈ Proc is
a step (q, v) p,δ−−→st (q, v +p δ). For an action b, we have a step (q, v) b−−→st (q′, v′) if there is
a set of b-transitions of respective processes {(qp, gp, Rp, q′p)}p∈dom(b) such that:

qp = q(p), q′p = q′(p), for p ∈ dom(b), and q(p) = q′(p) for p 6∈ dom(b);
start times are synchronized: v(tp1) = v(tp2), for every p1, p2 ∈ dom(b);
guards are satisfied: v � gp, for every p ∈ dom(b);
resets are performed: v′ = [

⋃
p∈dom(b)Rp]v;

The main difference with respect to global semantics is the presence of local time delay.
As a result, every process can be in a different local time as emphasized by the reference
clocks in each process. In consequence, in local action steps we require that when processes
do a common action their local times should be the same. Of course a standard delay
δ on all processes can be simulated by a sequence of delays on every process separately,
as 1,δ−−→st · · ·

k,δ−−→st. For a sequence of local delays ∆ = (p1, δ1) . . . (pn, δn) we will write
(q, v) ∆−−→st (q, v′) to mean (q, v) p1,δ1−−−→st (q, v1) p2,δ2−−−→st · · ·

(pn,δn)−−−−−→st (q, v′).

I Definition 6 (Local run). A local run from a configuration (q0, v0) is a sequence of local
steps. For a sequence of actions u = b1 . . . bn, we write (q0, v0) u−−→ (qn, v′n) if for some
sequences of local delays ∆0, . . . ,∆n there is a local run

(q0, v0) ∆0−−→st (q0, v′0) b1−−→st (q1, v1) ∆1−−→st · · ·
bn−−→st (qn, vn) ∆n−−→st (qn, v′n)

Observe that a run may start and end with a sequence of delays. In the next section we
will make a link between local and global runs. For this we will first examine independence
properties of local runs which are much better than for global runs (cf. Lemma 4).

I Lemma 7 (Independence). Suppose dom(a) ∩ dom(b) = ∅. If (q, v) ab−−→ (q′, v′) then
(q, v) ba−−→ (q′, v′). If (q, v) a−−→ (qa, va) and (q, v) b−−→ (qb, vb) then (q, v) ab−−→ (qab, vab) for
some qab and vab.

Recall that two sequences of actions are equivalent, written u ∼ w if one can be obtained
from the other by repeatedly permuting adjacent actions with disjoint domains. Directly
from the previous lemma we obtain.

I Lemma 8. If (q0, v0) u−−→ (qn, vn) and u ∼ w then (q0, v0) w−−→ (qn, vn).

With local-time semantics two equivalent sequences not only reach the same state qn,
but also the same local valuation vn (in contrast with Lemma 4 for global-time semantics).



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:7

2.2 Comparing local and global runs
We have presented two semantics for networks of timed automata: global-time and local-time.
Local runs have more freedom as time can elapse independently in every process. Yet, with
respect to state reachability the two concepts turn out to be equivalent.

I Definition 9. A local valuation v is synchronized if for every pair of processes p1, p2, the
values of their reference clocks are equal: v(tp1) = v(tp2).

For a synchronized local valuation v, let global(v) be the global valuation v such that
v(x̃) = v(x̃) and v(t) = v(t1) = · · · = v(tk). Conversely, to every global valuation v, we
associate the synchronized local valuation local(v) = v where v(x̃) = v(x̃) and v(tp) = v(t)
for every reference clock tp.

I Lemma 10. If (q, v) u−−→ (q′, v′) is a local run where v and v′ are synchronized local valu-
ations, there exists a global run (q, global(v)) w==⇒ (q′, global(v′)) for some w ∼ u. Conversely,
if (q, v) u==⇒ (q′, v′) is a global run, then there is a local run (q, local(v)) u−−→ (q′, local(v′)).

The reachability problem with respect to local semantics is defined as before: q is
reachable if there is a local run (qinit , vinit) u−−→ (q, v) for some v where vinit = local(vinit). By
adding some local delays at the end of the run we can always assume that v is synchronized.
Lemma 10 thus implies that the reachability problem in local semantics is equivalent to the
standard one in global semantics.

3 Zone graphs

We introduce zones, a standard approach for solving reachability in timed automata. Zones
are sets of valuations that can be represented efficiently using simple constraints.

Let us fix a network N of timed automata with k processes. Recall that each process
p has a set of clocks Xp and corresponding offset variables X̃p. The set of clocks in N is
X =

⋃k
i=1Xp. Similarly, the set of offset variables in N is X̃ =

⋃k
i=1 X̃p.

3.1 Standard zone-based algorithm for reachability
Recall that in the global-time semantics, N has a reference clock t. A global zone is a set
of global valuations described by a conjunction of constraints of the form y1 − y2 / c where
y1, y2 ∈ X̃ ∪ {t}, / ∈ {<,≤} and c ∈ Z. Since global valuations need to satisfy v(x̃) ≤ v(t)
for every offset variable x̃ ∈ X̃, a global zone satisfies x̃ ≤ t for every x̃ ∈ X̃.

Let g be a guard and R a set of clocks. We define the following operations on zones:
Zg = {v | v |= g} is the set of global valuations satisfying g, [R]Z := {[R]v | v ∈ Z} and
−→
Z := {v | ∃v′ ∈ Z, ∃δ ∈ R≥0 s. t. v = v′ + δ}. From [4], Zg, [R]Z and −→Z are all zones. We
say that a zone is time-elapsed if Z = −→Z .

The semantics of a network of timed automata can be described in terms of global zones.
For an action b, consider a set of b-transitions of respective processes {(qp, gp, Rp, q′p)}p∈dom(b).
Let R =

⋃
p∈dom(b)Rp, and g =

∧
p∈dom(b) gp. Then we have a transition (q, Z) b==⇒ (q′, Z ′)

where Z ′ =
−−−−−−−−→
[R](Z ∩ Zg) provided that q(p) = qp, q′(p) = q′p if p ∈ dom(b), and q′(p) = q(p)

otherwise, and Z ′ is not empty. We write =⇒ for the union over all b==⇒.
The global zone graph ZG(N ) of a timed automaton network N is a transition system

whose nodes are of the form (q, Z) where q ∈ Q and Z is a time-elapsed global zone. The
transition relation is given by =⇒. The initial node is (qinit , Zinit) where qinit is the tuple of

CONCUR 2019



16:8 Revisiting Local Time Semantics for Networks of Timed Automata

initial states and Zinit =
−−−−→
{vinit} where vinit is the initial global valuation. The zone graph

ZG(N ) is known to be sound and complete with respect to reachability. This means that a
state q is reachable by a run of N iff a node (q, Z) for some non-empty Z is reachable from
(qinit , Zinit) in the zone graph. As zone graphs may be infinite, an abstraction operator is
used to obtain a finite quotient.

An abstraction operator a : P (RX≥0)→ P (RX≥0) [2] is a function from sets of valuations
to sets of valuations such that W ⊆ a(W ) and a(a(W )) = a(W ). Simulation relations
between valuations are a convenient way to construct abstraction operators that are correct
for reachability. A time-abstract simulation is a relation between valuations that depends on
a given network N . We say that v1 can be simulated by v2, denoted v1 4 v2 if for every state
q of N , and every delay-action step (q, v1) δ1==⇒ b==⇒ (q′, v′1) there is a delay δ2 ∈ R≥0 such that
(q, v2) δ2==⇒ b==⇒ (q′, v′2) and v′1 4 v′2. The simulation relation can be lifted to global zones: we
say that Z is simulated by Z ′, written as Z 4 Z ′ if for all v ∈ Z there exists a v′ ∈ Z ′ such
that v 4 v′. An abstraction a based on 4 is defined as a(W ) = {v | ∃v′ ∈W with v 4 v′}.
The abstraction a is finite if its range is finite. Given two nodes (q, Z) and (q′, Z ′) of ZG(N ),
(q, Z) is subsumed by (q′, Z ′), denoted (q, Z) va (q′, Z ′), if q = q′ and Z ⊆ a(Z ′).

I Remark 11. Our definition of zones slightly differs from the standard definition in the
literature (e.g. [5]) since we use offset variables to represent clock valuations. Yet, finite
time-abstract simulations from the literature [2, 12] can be adapted to our settings as a
simulation over standard valuations v can be expressed as a simulation over global valuations
v since for every clock x, v(x) = v(t)− v(x̃), and zones over valuations v can be translated
to zones over standard valuations v.

A finite abstraction a allows to construct a finite global zone graph with subsumption
for a network of timed automata N . The construction starts from the initial node of
ZG(N ). Using, say, a breadth-first-search (BFS), for every constructed node we examine
all its successors in ZG(N ), and keep only those that are maximal w.r.t. to va relation.
Computing such a zone graph with subsumption gives an algorithm for the reachability
problem. However, the global zone graph, and hence the algorithm above, are sensitive to
the combinatorial explosion arising from parallel composition. Global time makes any two
actions potentially dependent – the same is still true on the level of zones. Zone graphs based
on the local-time semantics, as presented next, solve this problem.

3.2 Local zone graphs
The goal of this section is to introduce a concept similar to global zones and global zone
graphs for local-time semantics. Recall that in the local-time semantics, each process p has a
reference clock tp.

A local zone is a zone over local valuations: a set of local valuations defined by constraints
y1 − y2 / c where y1, y2 ∈ X̃ ∪ {t1, . . . tk}. Recall that a local valuation v needs to satisfy:
v(x̃) ≤ v(tp) for every process p and every x̃ ∈ X̃p. This means that a local zone satisfies
x̃ ≤ tp for every process p and every x̃ ∈ X̃p. We will use Z, eventually with subscripts, to
range over local zones, and distinguish from global zones Z. Local zones are closed under all
basic operations involved in a local step of a network of timed automata, namely: local time
elapse, intersection with a guard, and reset of clocks [4]. That is, for every local zone Z:

the set local-elapse(Z) = {v +1 δ1 +2 · · ·+k δk | v ∈ Z, δ1, . . . , δk ∈ R≥0} is a local zone.
for every guard g the set Zg = {v | v � g} is a local zone.
for every set of clocks R ⊆ X, the set [R]Z = {[R]v | v ∈ Z} is a local zone.

Local zones can be implemented using DBMs. Hence, they can be computed and stored as
efficiently as standard zones.



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:9

The operations of local time elapse, guard intersection, and reset, enable us to describe
a local step (q,Z) b−−→ (q′,Z′) on the level of local zones. This is done in the same way
as for global zones. Observe that a local step is indexed only by an action, as the time is
taken care of by the local time elapse operation. Formally, for an action b consider a set
of b-transitions {(qp, gp, Rp, q′p)}p∈dom(b) of respective processes. Then we have a transition
(q,Z) b==⇒ (q′,Z′) for Z′ = local-elapse([R](Z ∩ Zg ∩ Zsync)) where Zg =

⋂
p∈dom(b) Zgp ,

Zsync = {v | v(tp1) = v(tp2) for p1, p2 ∈ dom(b)} and R = [
⋃
p∈dom(b)Rp]. Intuitively, Z′ is

the set of valuations obtained through reset and then local-time elapse, from valuations in Z
that satisfy the guard and such that the processes involved in action b are synchronised. We
extend b−−→ to (q,Z) u−−→ (q′,Z′) for a sequence of actions u in the obvious way.

Using local zones, we construct a local zone graph and show that it is sound and complete
for reachability testing. The only missing step is to verify the pre/post properties of runs on
local zones. We say a local zone is time-elapsed if Z = local-elapse(Z).

I Lemma 12 (Pre and post properties of runs on local zones). Let u be a sequence of actions.
If (q, v) u−−→ (q′, v′) and v ∈ Z for some time-elapsed local zone Z then (q,Z) u−−→ (q′,Z′)
and v′ ∈ Z′ for some local zone Z′.
If (q,Z) u−−→ (q′,Z′) and v′ ∈ Z′ then (q, v) u−−→ (q′, v′), for some v ∈ Z.

I Definition 13 (Local zone graph). For a network of timed automata N the local zone
graph of N , denoted LZG(N ), is a transition system whose nodes are of the form (q,Z)
where Z is a time elapsed local zone, and whose transitions are steps (q,Z) b−−→ (q′,Z′). The
initial node (qinit ,Zinit) consists of the initial state qinit of the network and the local zone
Zinit = local-elapse({vinit}).

Directly from Lemma 12 we obtain the main property of local zone graphs stated in [4].
This allows us to use local zone graphs for reachability testing.

I Theorem 14. For a given network of timed automata N , there is a run of the network
reaching a state q iff for some non-empty local zone Z, node (q,Z) is reachable in LZG(N )
from its initial node.

Notice that LZG(N ) may still be infinite and it cannot be used directly for reachability
checking. The solution in Remark 11 does not apply to local zones due to the multiple
reference clocks. This problem will be addressed in Section 5. We first focus on important
properties of the local-time zone graph w.r.t. concurrency.

4 Why are local zone graphs better than global zone graphs?

The important feature about local zone graphs, as noticed in [4], is that two transitions on
actions with disjoint domains commute (see Figure 1).

I Lemma 15 (Commutativity on local zones [4]). Suppose dom(a)∩dom(b) = ∅. If (q,Z) ab−−→
(q′,Z′) then (q,Z) ba−−→ (q′,Z′).

From the above lemma, we get the following property.

I Corollary 16. If (q,Z) u−−→ (q′,Z′) and u ∼ w, then (q,Z) w−−→ (q′,Z′)

Thus starting from a local zone, all equivalent interleavings of a sequence of actions u
end up in the same local zone. This is in stark contrast to the global zone graph, where each
interleaving results in a possibly different global zone. Let

MZ(q, Z, u) = {v′ | ∃v ∈ Z, ∃w, w ∼ u and (q, v) w==⇒ (q′, v′)}

CONCUR 2019



16:10 Revisiting Local Time Semantics for Networks of Timed Automata

denote the union of all these global zones. Salah et al. [17] have shown that, surprisingly,
MZ(q, Z, u) is always a global zone. We call it aggregated zone, and the notation MZ is in
the memory of Oded Maler. In the same work, this observation was extended to an algorithm
for acyclic timed automata that from time to time merged zones reached by equivalent paths
to a single global zone. We prove below that this aggregated zone can, in fact, be obtained
directly in the local zone graph: the aggregated (global) zone is exactly the set of synchronized
valuations obtained after executing u in the local zone semantics. Here we need some notation:
let Z be a global zone and Z a local zone; define sync(Z) = {v ∈ Z | v is synchronized};
local(Z) = {local(v) | v ∈ Z} and global(sync(Z)) = {global(v) | v ∈ sync(Z)}.

I Lemma 17. For every global zone Z and local zone Z: sync(Z) and local(Z) are local zones
and global(sync(Z)) is a global zone.

Proof. sync(Z) is the local zone Z ∧
∧
i,j(ti = tj); local(Z) is the local zone obtained

by replacing t with some ti in each constraint, and adding the constraints
∧
i,j(ti = tj);

global(sync(Z)) is obtained by replacing each ti with t in each constraint of Z. J

I Theorem 18. Consider a state q, a sequence of actions u and a time elapsed global
zone Z. Consider the local zone Z = local-elapse(local(Z)). If (q,Z) u−−→ (q′,Z′), we have
MZ(q, Z, u) = global(sync(Z′)), otherwise MZ(q, Z, u) = ∅.

Proof. Pick v′ ∈MZ(q, Z, u). There exists w ∼ u, v ∈ Z and a global run (q, v) w==⇒ (q′, v′).
From Lemma 10, there exists a local run (q, local(v)) w−−→ (q′, local(v′)). By assump-
tion, local(v) ∈ Z. Hence from the pre property of local zones (Lemma 12), there ex-
ists (q,Z) w−−→ (q′,Zw) such that local(v′) ∈ Zw. As local(v′) is synchronized, we get
local(v′) ∈ sync(Zw). But, by Corollary 16, Zw = Z′. This proves local(v′) ∈ sync(Z′) and
hence v′ ∈ global(sync(Z′)).

For the other direction take v′ ∈ global(sync(Z′)). As (q,Z) u−−→ (q′,Z′), by post property
of local zones (Lemma 12) there is a local run (q, vu) u−−→ (q′, local(v′)) for some vu ∈ Z.
Since vu ∈ Z, it is obtained by a local time elapse from some v ∈ local(Z). Hence v is
synchronized and global(v) ∈ Z. From Lemma 10 we get that for some w ∼ u there is a
global run (q, global(v)) w==⇒ (q′, v′). Hence v′ ∈MZ(q, Z, u). J

Theorem 18 gives an efficient way to compute aggregated zones: it is sufficient to compute
local zone graphs. Computing local zone graphs is not more difficult than computing global
zone graphs. But, surprisingly, the combinatorial explosion due to interleaving does not
occur in local zone graphs, thanks to the theorem above. Hence, this gives an incentive to
work with local zone graphs instead of global zone graphs.

This contrasts with the aggregation algorithm in [17] which requires to store all the
paths to a global zone and detect situations where zones can be merged, that is, when
all the equivalent permutations have been visited. Another important limitation of the
algorithm in [17] is that it can only be applied to acyclic zone graphs. If local zone graphs
can be computed for general timed automata (which contain cycles), we can get to use the
aggregation feature for all networks (and not only acyclic ones). To do this, there is still a
major problem left: local zone graphs could be infinite when the automata contain cycles.

5 Making local zone graphs finite

The standard approach to make a global zone graph finite is to use a subsumption operation
between global zones [2, 12]. Such a subsumption operation is usually based on a finite
index simulation between (global) valuations parameterized by certain maximum constants



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:11

occurring in guards. We first discuss technical problems that arise when we lift these
simulations to local valuations. In the paper introducing local time semantics and local
zone graphs [4] a notion of a catch-up equivalence between local valuations is defined. This
equivalence is a finite index simulation. So one could, in theory, construct a finite local zone
graph using catch-up subsumption as a finite abstraction. Unfortunately, the question of
effective algorithms for catch-up subsumption was left open in [4], and, to the best of our
knowledge, there is no efficient procedure for catch-up subsumption.

Another finite abstraction of the local zone graph was proposed by Minea [15, 16]. We
however believe that Minea’s approach carries a flaw, and a different idea is needed to get
finiteness. Minea’s approach is founded on an equivalence between local valuations in the
lines of the region equivalence [1]. Let cmax be the maximum constant appearing among
the guards of a timed automata network. Two local valuations v1 and v2 are said to be
equivalent, written as v1 'reg v2 if for all variables α, β ∈ X̃ ∪ {t1, . . . , tk} (note that all
reference clocks are included):

either bv1(α)− v1(β)c = bv2(α)− v2(β)c,
or bv1(α)− v1(β)c > cmax and bv2(α)− v2(β)c > cmax,
or bv1(α)− v1(β)c < −cmax and bv2(α)− v2(β)c < −cmax.

It is claimed (in Proposition 6 of [15]) that this equivalence is preserved over local time
elapse: for every process p, and for δ ≥ 0 there exists δ′ ≥ 0 such that v1 +p δ 'reg v2 +p δ

′.
However, this is not true, as we now exhibit a counter-example. Consider 2 processes with
clocks X1 = {x}, X2 = {y}. This gives X̃ = {x̃, ỹ} and T = {t1, t2}. Let cmax = 3. Define
local valuations v1 : x̃ = 0, t1 = 0, ỹ = 0, t2 = 4 and v2 : x̃ = 0, t1 = 0, ỹ = 0, t2 = 5.

Note that the differences in v1 are either 0, 4 or −4 and the corresponding differences
in v2 are 0, 5 or −5. Hence by definition, v1 'reg v2. Consider valuation v1 +1 2 obtained
from v1 by local delay of 2 units in component 1, that is v1 +1 2 : x̃ = 0, t1 = 2, ỹ = 0, t2 = 4
Observe that in v1 +1 2, the difference t1 − x̃ = 2 and t2 − t1 = 2 which are both smaller
than cmax. We claim there is no local delay δ′ such that v1 +1 2 'reg v2 +1 δ

′. Valuation
v2 +1 δ

′ is given by x̃ = 0, t1 = δ′, ỹ = 0, t2 = 5. If v1 +1 2 'reg v2 +1 δ
′, we need δ′ = 2 (due

to difference t1 − x̃) and 5− δ′ = 2 (due to difference t2 − t1). This is not possible.
The main problem is that the above equivalence “forgets” actual values when the difference

between reference clocks is above cmax. Even if this difference is bigger than the maximum
constant, local delays can bring them within the constant cmax. Such a situation does not
arise in the global semantics, as there is a single reference clock.

In [15] a widening operator on local zones based on 'reg is used for finiteness: given a
canonical representation of a zone Z, the maximized zone with respect to cmax is obtained by
changing every constraint y1 − y2 / c to y1 − y2 <∞ if c > cmax, and to y1 − y2 < −cmax if
c < −cmax. In the local zone graph construction, each local zone is maximized and inclusion
between maximized zones is used for termination. Figure 2 gives an example of a network
〈A1, A2〉 where the maximized local zone graph is unsound. This is shown by making use of
the valuations v1 and v2 above. We also add an extra clock z in component A2 for convenience.
Note that cmax = 3. Although clock y does not appear in A2, one can assume that there are
other transitions from q0 that deal with y (we avoid illustrating these transitions explicitly).
In the discussion below, v1, v2 are valuations restricted to x̃, ỹ, t1 and t2. In order to reach
the state p2, the synchronization action c needs to be taken: transition sequence a1c requires
c to be taken at global time 4, and transition sequence b1b2c requires c at global time 5.
Hence c is not enabled in the network. This is witnessed by c not being enabled in the
local zone graph (middle picture). Valuation v2 is present in the zone reached after b1b2.

CONCUR 2019



16:12 Revisiting Local Time Semantics for Networks of Timed Automata

p0

p1

p2

q0

q1

q2

q3

a1

c

b1

b2

c

x = 2
{x}

x = 2

z = 2
{z}

z = 3
{z}

x̃ = ỹ = z̃

t1 ≥ x̃, t2 ≥ z̃

ỹ = z̃

x̃− ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 5
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 5
t1 ≥ x̃, t2 ≥ z̃

〈p0, q0〉

〈p1, q0〉 〈p0, q1〉

〈p1, q1〉 〈p0, q2〉

〈p1, q2〉

a1 b1

b1 a1 b2

b2 a1

x̃ = ỹ = z̃

t1 ≥ x̃, t2 ≥ z̃

ỹ = z̃

x̃− ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 2
t1 ≥ x̃, t2 ≥ z̃

x̃ = ỹ

z̃ − ỹ = 3
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2
z̃ − ỹ = 3
t1 ≥ x̃, t2 ≥ z̃

x̃− ỹ = 2, z̃ − ỹ = 3
t1 − x̃ ≥ 2
t2 − ỹ ≥ 3, t2 ≥ z̃

〈p0, q0〉

〈p1, q0〉 〈p0, q1〉

〈p1, q1〉 〈p0, q2〉

〈p1, q2〉 〈p2, q3〉

a1 b1

b1 a1 b2

b2 a1

c

Figure 2 Left: network 〈A1, A2〉; Middle: local zone graph; Right: maximized local zone graph
of [15]. State (p2, q3) is not reachable in local zone graph, but becomes reachable after maximization.

The maximized local zone graph is shown on the right. Zones where maximization makes a
difference are shaded gray. In particular, the zone b1b2 on maximization adds valuation v1,
from which a1c is enabled, giving a zone in the maximized local zone graph with state p2.

5.1 Synchronized valuations for subsumption
A finite abstraction of the differences between reference clocks constitutes the main challenge
in obtaining a finite local zone graph. We propose a different solution which bypasses the
need to worry about such differences: restrict to synchronized valuations for subsumption.

Subsumptions over global zones are well studied [1, 2, 12]. Taking an off-the-shelf finite
abstraction a and a subsumption va between global zones, we want to do the following: given
two local zones Z1 and Z2 we perform a subsumption test global(sync(Z1)) va global(sync(Z2)).
By finiteness of the abstraction, we will get only finitely many local zones Z with incomparable
global(sync(Z)). In order to do this, we need the crucial fact that global(sync(Z)) is a zone
(shown in Lemma 17). Given two configurations s := (q,Z) and s′ := (q′,Z′) of the local zone
graph, we write s va

sync s
′ if q = q′ and global(sync(Z)) va global(sync(Z′)).

I Definition 19 (Local sync graph). Let a be a finite abstraction over global zones. A local
sync graph G of a network of timed automata N based on a, is a tree and a subgraph of
LZG(N ) satisfying the following conditions:
C0 every node of G is labeled either covered or uncovered;
C1 the initial node of LZG(N ) belongs to G and is labeled uncovered;
C2 every node is reachable from the initial node;
C3 for every uncovered node s, all its successor transitions s a−−→ s′ occurring in LZG(N )

should be present in G;
C4 for every covered node s ∈ G there is an uncovered node s′ ∈ G such that s va

sync s
′. A

covered node has no successors.

The above definition essentially translates to this algorithm: explore the local zone graph
say in a BFS fashion, and subsume (cover) using va

sync (similar to algorithm for global
zone graph as described in page 8). Local sync graphs are not unique, since the final graph
depends on the order of exploration. Every local sync graph based on a finite abstraction
a is finite. Theorem 20 below states that local sync graphs are sound and complete for
reachability, and this algorithm is correct.



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:13

I Theorem 20 (Soundness and completeness of local sync graphs). A state q is reachable in
a network of timed automata N iff a node (q,Z), with Z non-empty, is reachable from the
initial node in a local sync graph for N .

Proof. If (q,Z) is reachable in a local sync graph then it is trivially reachable in the local
zone graph and the (backward) implication follows from soundness of local zone graphs
(Theorem 14). For the other direction which proves completeness of local sync graphs, let
us take a global run: (qinit , vinit)

δ1,b1===⇒ (q1, v1) · · · δn,bn====⇒ (qn, vn). Take a local sync graph
G, based on abstraction a coming from a simulation 4. By induction on i, for every (qi, vi)
we will find an uncovered node (qi,Zi) of G, and a synchronized local valuation vi ∈ Zi
such that vi 4 global(vi). This proves completeness, since every reachable (qi, vi) will have a
representative node in the local sync graph.

The induction base is immediate, so let us look at the induction step. Consider the
global step (qi, vi)

δi,bi===⇒ (qi+1, vi+1). Since vi 4 global(vi), there is a delay δ′i such that

(qi, global(vi))
δ′

i,bi===⇒ (qi+1, v
′
i+1) and vi+1 4 v′i+1. As the global delay δ′i can be thought of a

sequence of local delays, we have local run (qi, vi)
bi−−→ (qi+1, v′i+1), where v′i+1 = local(v′i+1).

Note that v′i+1 is synchronized and vi+1 4 global(v′i+1). From the pre-property of local
zones (Lemma 12) there exists a transition (qi,Zi)

bi−−→ (qi+1,Z′i+1) with v′i+1 ∈ Z′i+1, in fact,
v′i+1 ∈ sync(Z′i+1). If (qi+1,Z′i+1) is uncovered, take v′i+1 for vi+1 and Z′i+1 for Zi+1 (needed
by the induction step). Otherwise, from condition C4, there is an uncovered node (qi+1,Z′′i+1)
such that global(sync(Z′i+1)) 4 global(sync(Z′′i+1)). This gives v′′i+1 ∈ sync(Z′′i+1) such that
global(v′i+1) 4 global(v′′i+1). Now take v′′i+1 for vi+1 and Z′′i+1 for Zi+1. J

6 Experiments

We have implemented the construction of local sync graphs in our prototype TChecker [11]
and compared it with two implementations of the usual global zone graph method: TChecker
and UPPAAL [13, 3], the state-of-the-art verification tool for timed automata. The three
implementations use a breadth-first search with subsumption, and the va

sync subsumption in
the case of local sync graph. Table 1 presents results of our experiments on standard models
from the literature (except “Parallel” that is a model we have introduced).

Local sync graphs yield no gain on 3 standard examples (which are not given in Table 1):
“CSMA/CD”, “FDDI” and “Fischer”. In these models, the three algorithms visit and store
the same number of nodes. The reason is that for “CSMA/CD” and “FDDI”, replacing each
local zone Z in the local zone graph by its set of synchronized valuations sync(Z) yields
exactly the zone graph. In the third model, “Fischer”, every control state appears at most
once in the global zone graph. So there is no hope to achieve any gain with our technique.
This is due to the fact that doing ab or ba results in two different control states in the
automaton. So “Fischer” is out of the scope of our technique.

In contrast, we observe significant improvements on other standard models (Table 1).
Observe that due to subsumption, the order in which nodes are visited impacts the total
number of visited nodes. UPPAAL and our prototype TChecker (Global ZG column) may
not visit the same number of nodes despite the fact that they implement the same algorithm.
In our prototype we use the same order of exploration for Global ZG and Local ZG. “CorSSO”
and “Critical region” are standard examples from the literature. “Dining Philosophers”
is a modification of the classical problem where a philosopher releases her left fork if she
cannot take her right fork within a fixed amount of time [14]. “Parallel” is a model we have
introduced, where concurrent processes compete to access a resource in mutual exclusion.

CONCUR 2019



16:14 Revisiting Local Time Semantics for Networks of Timed Automata

Table 1 Experimental results obtained by running UPPAAL and our prototype TChecker (Global
ZG and Local ZG) on a MacBook Pro 2013 with 4 2.4GHz Intel Core i5 and 16 GB of memory. The
timeout is 90 seconds. For each model we report the number of concurrent processes.

Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.
CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71
Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55
Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20
Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

We observe an order of magnitude gains for most of these four models. The reason is that
in most states when two processes can perform actions a and b, doing ab or ba leads to
the same control-state of the automaton. Hence, a difference between ab and ba (if any) is
encoded in distinct zones Zab and Zba obtained along these two paths in the global zone
graph. In contrast, the two paths result in the same zone Z (containing both Zab and Zba)
in the local sync graph. In consequence, our approach that combines the local zone graph
and abstraction using synchronized zones is very efficient in this situation.

7 Conclusions

We have revisited local-time semantics of timed automata and local zone graphs. We have
discovered a very useful fact that local zones calculate aggregated zones: global zones that
are unions of all the zones obtained by equivalent executions [17]. We have used this fact as a
theoretical foundation for an algorithm constructing local zone graphs and using subsumption
on aggregated zones at the same time.

We have shown that, unfortunately, subsumption operations on local zones proposed in
the literature do not work. We have proposed a new subsumption for local zone graphs based
on standard abstractions for timed automata, applied on synchronized zones. The restriction
to synchronized zones is crucial as standard abstractions cannot handle multiple reference
clocks. A direction for future work is to find abstractions for local zones.

Our algorithm is the first efficient implementation of local time zone graphs and aggregated
zones. Experimental results show an order of magnitude gain with respect to state-of-the-art
algorithms on several standard examples.

As future work, we plan to develop partial-order techniques taking advantage of the high
level of commutativity in local zone graphs. Existing methods are not directly applicable in
the timed setting. In particular, contrary to expectations, actions with disjoint domains may
not be independent (in a partial order sense) in a local zone graph [15]. Thus, it will be very
interesting to understand the structure of local zone graphs better. A recent partial-order
method proposed for timed-arc Petri nets [6] gives a hope that such obstacles can be overcome.
For timed networks with cycles, the interplay of partial-order and subsumption adds another
level of difficulty.



R. Govind, F. Herbreteau, B. Srivathsan, and I. Walukiewicz 16:15

References
1 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126:183–235, 1994.
2 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and Upper

Bounds in Zone-Based Abstractions of Timed Automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

3 Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Hakansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In QEST, pages 125–126. IEEE Computer
Society, 2006.

4 Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial Order Reductions for
Timed Systems. In CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
485–500, 1998.

5 Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and Tools. In
ACPN 2003, volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer, 2003.

6 Frederik M. Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Muñiz, and Jirí
Srba. Start Pruning When Time Gets Urgent: Partial Order Reduction for Timed Systems.
In CAV, volume 10981 of Lecture Notes in Computer Science, pages 527–546. Springer, 2018.

7 Conrado Daws and Stavros Tripakis. Model Checking of Real-Time Reachability Properties
Using Abstractions. In TACAS, volume 1384 of Lecture Notes in Computer Science, pages
313–329. Springer, 1998.

8 D. L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems. In
Proceedings of the International Workshop on Automatic Verification Methods for Finite State
Systems, pages 197–212, 1990.

9 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. CoRR, abs/1904.08590, 2019. arXiv:1904.08590.

10 R Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting local time
semantics for networks of timed automata. CoRR, abs/1907.02296, 2019. arXiv:1907.02296.

11 F. Herbreteau and G. Point. TChecker. https://github.com/fredher/tchecker, v0.2 - April
2019.

12 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better Abstractions for Timed
Automata. In LICS, pages 375–384. IEEE Computer Society, 2012.

13 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT,
1(1-2):134–152, 1997.

14 Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. Theor. Comput. Sci., 345(1):27–59, 2005.

15 Marius Minea. Partial Order Reduction for Model Checking of Timed Automata. In CONCUR,
volume 1664 of Lecture Notes in Computer Science, pages 431–446. Springer, 1999.

16 Marius Minea. Partial Order Reduction for Verification of Timed Systems. PhD thesis, School
of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213, 1999.

17 Ramzi Ben Salah, Marius Bozga, and Oded Maler. On Interleaving in Timed Automata. In
CONCUR, volume 4137 of Lecture Notes in Computer Science, pages 465–476. Springer, 2006.

18 Marcelo Sousa, César Rodríguez, Vijay D’Silva, and Daniel Kroening. Abstract Interpretation
with Unfoldings. In CAV, pages 197–216, 2017.

CONCUR 2019

http://arxiv.org/abs/1904.08590
http://arxiv.org/abs/1907.02296
https://github.com/fredher/tchecker

	Introduction
	Networks of timed automata
	Local-time semantics
	Comparing local and global runs

	Zone graphs
	Standard zone-based algorithm for reachability
	Local zone graphs

	Why are local zone graphs better than global zone graphs?
	Making local zone graphs finite
	Synchronized valuations for subsumption

	Experiments
	Conclusions

