Indexing Graph Search Trees and Applications

Sankardeep Chakraborty
RIKEN Center for Advanced Intelligence Project, Japan
sankar.chakraborty@riken.jp

Kunihiko Sadakane
The University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract
We consider the problem of compactly representing the Depth First Search (DFS) tree of a given undirected or directed graph having n vertices and m edges while supporting various DFS related queries efficiently in the RAM with logarithmic word size. We study this problem in two well-known models: indexing and encoding models. While most of these queries can be supported easily in constant time using $O(n \log n)$ bits of extra space, our goal here is, more specifically, to beat this trivial $O(n \log n)$ bit space bound, yet not compromise too much on the running time of these queries. In the indexing model, the space bound of our solution involves the quantity m, hence, we obtain different bounds for sparse and dense graphs respectively. In the encoding model, we first give a space lower bound, followed by an almost optimal data structure with extremely fast query time. Central to our algorithm is a partitioning of the DFS tree into connected subtrees, and a compact way to store these connections. Finally, we also apply these techniques to compactly index the shortest path structure, biconnectivity structures among others.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Depth First Search Tree, Compact Data Structures, Encoding Schemes

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.67

Funding This work was partially supported by JST CREST Grant Number JPMJCR1402, Japan.

1 Introduction

Depth First Search (DFS) is a very well-known method for visiting the vertices and edges of a directed or undirected graph. DFS differs from other ways of traversing the graph such as Breadth First Search (BFS) by the following DFS protocol: Whenever two or more vertices were discovered by the search method and have unexplored incident (out)edges, an (out)edge incident on the most recently discovered such vertex is explored first. This DFS traversal produces a rooted spanning tree (forest), called DFS tree (forest) along with assigning an index to every vertex v i.e., the time vertex v is discovered for the first time during DFS. We call it depth-first-index (DFI(v)). Let $G = (V, E)$ be a graph on $n = |V|$ vertices and $m = |E|$ edges where $V = \{v_1, v_2, \cdots, v_n\}$. It takes $O(m + n)$ time to perform a DFS traversal of G and to generate its DFS tree (forest) with DFIs of all the vertices. The DFS rule confers a number of structural properties on the resulting graph traversal that cause DFS to have a large number of applications. These properties are captured in the DFS tree (forest), and can be used crucially to design efficient algorithms for many basic and fundamental algorithmic graph problems, namely, biconnectivity [22], 2-edge connectivity [23], strongly connected components [22], topological sorting [22], dominators [24], st-numbering [13] and planarity testing [17] among many others.

1 We use \log to denote logarithm to the base 2.
There are two versions of DFS studied in the literature. In the lexicographically smallest DFS or lex-DFS problem, when DFS looks for an unvisited vertex to visit in an adjacency list, it picks the “first” unvisited vertex where the “first” is with respect to the appearance order in the adjacency list. The resulting DFS tree will be unique. In contrast to lex-DFS, an algorithm that outputs some DFS numbering of a given graph, treats an adjacency list as a set, ignoring the order of appearance of vertices in it, and outputs a vertex ordering Q such that there exists some adjacency ordering R such that Q is the DFS numbering with respect to R. We say that such a DFS algorithm performs general-DFS. In this work, we focus only on lex-DFS, thus, given a source vertex, the DFS tree is always unique. Given the lex-DFS tree, the non-tree edges of a given directed graph can be classified into four categories as follows. An edge directed from a vertex to its ancestor in the tree is called a back edge. Similarly, an edge directed from a vertex to its descendant in the tree is called a forward edge. Further, an edge directed from right to left in the DFS tree is called a cross edge. The remaining edges directed from left to right in the tree are called anti-cross edges. In the undirected graphs, there are no cross edges. Note that, we can store the complete DFS tree explicitly using $O(n \log n)$ bits by storing pointers between nodes. In what follows, we formally define the problem which we call the **DFS-Indexing** problem.

<table>
<thead>
<tr>
<th>DFS-Indexing problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A directed or undirected graph $G = (V, E)$ where $</td>
</tr>
<tr>
<td>1. Given any pair of vertices v_i and v_j,</td>
</tr>
<tr>
<td>a. Who is visited first in the DFS traversal of G?</td>
</tr>
<tr>
<td>b. Is v_i an ancestor of v_j in T?</td>
</tr>
<tr>
<td>2. Given v_i,</td>
</tr>
<tr>
<td>a. Return the parent of v_i in T.</td>
</tr>
<tr>
<td>b. Return the number of children (if any) of v_i in T.</td>
</tr>
<tr>
<td>c. Enumerate all the children (if any) of v_i in T.</td>
</tr>
<tr>
<td>d. Return the DFI of v_i.</td>
</tr>
<tr>
<td>3. Enumerate the order in which vertices of G are visited in the DFS.</td>
</tr>
<tr>
<td>4. Given $1 \leq i \leq n$, return the vertex with DFI i.</td>
</tr>
</tbody>
</table>

We study the **DFS-Indexing** problem in two well-known models: the **indexing** and **encoding** models [21]. In the indexing model, we wish to build an index ind after preprocessing the input graph G such that queries can be answered using both ind and G whereas in the encoding model, we seek to build a data structure $encod$ after preprocessing the input graph G such that queries have to be answered using $encod$ only. Typically the parameters of interest are (i) query time, (ii) space consumed (in bits) by ind and $encod$ resp. and (iii) the preprocessing time and space. We address all these issues in our paper for the **DFS-Indexing** problem, assuming our computational model is a Random-Access-Machine with constant time operations on $O(\log n)$-bit words. In both models, it is not hard to see that using $O(n \log n)$ bits, we can answer all the queries of the **DFS-Indexing** problem in the optimal $O(1)$ time except the query of 3 which takes $O(n)$ time. Our main objective here is to beat this trivial $O(n \log n)$ bit space bound without compromising too much on the query time.

The motivation for studying this question mainly stems from the rise of the “big data” phenomenon and its implications. To illustrate, the rate at which we store data is increasing even faster than the speed and capacity of computing hardware. Thus, if we want to use the stored data efficiently, we need to represent it in sophisticated ways. Many applications dealing
with huge data structures can benefit from keeping them in compressed form. Compression has many advantages: it can allow a representation to fit in main memory rather than swapping out to disk, and it improves cache performance since it allows more data to fit into the cache. However, such a data structure is only handy if it allows the application to perform fast queries to the data, and this is the direction we want to explore for the DFS tree. More specifically, we are interested in representing the DFS tree of a given graph compactly while supporting all the queries mentioned above efficiently.

1.1 Representation of the Input Graph

We assume that the input graphs \(G = (V,E) \) are represented using the adjacency array format, i.e., \(G \) is given by an array of length \(|V|\) where the \(i \)-th entry stores a pointer to an array that stores all the neighbors of the \(i \)-th vertex. For the directed graphs, we assume that the input representation has both in/out adjacency array for all the vertices i.e., for directed graphs, every vertex \(v \) has access to two arrays, one array is for all the in-neighbors of \(v \) and the other array is for all the out-neighbors of \(v \). This form of input graph representation has now become somewhat standard and was recently used in plenty of other works [2, 6, 7, 8, 9, 10]. Throughout this paper, we call a graph sparse when \(m = O(n) \), and dense otherwise (i.e., \(m = \omega(n) \)).

1.2 Our Main Results and Organization of the Paper

We start by mentioning some preliminary results that will be used throughout the paper in Section 2. Section 3 contains the description of our main index for solving the DFS-Indexing problem in the indexing model. Our main results here can be summarized as follows,

► Theorem 1. In the indexing model, given any sparse (dense resp.) undirected or directed graph \(G \), there exists an \(O(m + n) \) time and \(O(n \log n) \) bits preprocessing algorithm which outputs a data structure of size \(O(n) \) (\(O(n \log (m/n)) \) resp.) bits, using which the queries 1(a), 1(b), 2(d) and 4 can be reported in \(O(\log n) \) time, 2(a) and 2(b) in \(O(1) \) time, 2(c) in time proportional to the number of solutions, and finally 3 can be solved in \(O(n) \) time resp. for the DFS-Indexing problem.

We want to emphasize that obtaining better results for sparse graphs is not only interesting from theoretical perspective but also from practical point of view as these graphs do appear very frequently in most of the realistic network scenario in real world applications, e.g., Road networks and the Internet.

In Section 4, we provide the detailed proof of our index in the encoding model. This contains a space lower bound for any index for the DFS-Indexing problem, followed by an index whose size asymptotically matches the lower bound and has efficient query time. We summarize our main results below.

► Theorem 2. In the encoding model, the size of any data structure for the DFS-Indexing problem must be \(\Omega(n \log n) \) bits. On the other hand, given any (un)directed graph, there exists an \(O(m + n) \) time and \(O(n \log n) \) bits preprocessing scheme that outputs an index of size \((1 + \epsilon)n \log n + 2n + o(n) \) bits (for any constant \(\epsilon > 0 \)), using which the queries 1(a), 1(b), 2(a), 2(b), 2(d) can be reported in \(O(1) \) time, 2(c) in time proportional to the number of solutions, 3 in \(O(n/\epsilon) \) time, and finally 4 in \(O(1/\epsilon) \) time resp. for the DFS-Indexing problem in this setting.
Building on all these aforementioned results, we also show a host of applications of our techniques in designing indices for other fundamental graph problems. We provide the details about these results in the full version of our paper. Finally, we conclude in Section 5 with some open problems and possible future directions to explore further.

Remark. At this point we want to emphasize that our results are more general, i.e., they can be extended to store any arbitrary labeled tree (arising from some underlying graph) along with the mechanism for fast querying. This method is very useful as many graph algorithms (like shortest path, minimum spanning tree, biconnectivity etc) induce a tree structure which is used subsequently during the execution of the algorithm. Hence, we can use our technique to store and query those trees compactly as well as efficiently. Thus, we also believe that our algorithm may find many other potential interesting applications. However, we chose to provide all the details in terms of DFS as DFS is very widely popular graph traversal technique and is used as the backbone for multiple fundamental algorithms, yet there is no explicit indexing scheme for storing DFS tree compactly. In the full version of our paper, we show how one can extend these techniques to design indexing schemes for a variety of other classical and fundamental graph problems.

1.3 Related Works

There already exists a large body of work concerning compactly representing various specific classes of graphs, for example planar, constant genus graphs etc [1, 5, 16, 18, 20, 21, 25]. All of these works are able to store an n-vertex unlabeled planar graph in $O(n)$ bits, and some of them even allow for $O(1)$-time neighbor queries. Generally what is meant by unlabeled is that the algorithm is free to choose an ordering on the vertices (integer labels from 1 to n). Our setting here is slightly different as we work with graphs whose vertices are labeled, and matches closely with [3]. Also we want to support more complex queries whereas the previous works only focused on adjacency queries mostly. Even though DFS being such a widely known method, and having many applications, to the best of our knowledge, we are not aware of any previous work focusing on compactly representing the DFS tree with efficient query support.

2 Preliminaries

Rank-Select. We make use of the following theorem:

▶ **Theorem 3** ([11]). We can store a bitstring B of length n with additional $o(n)$ bits such that rank and select operations (defined below) can be supported in $O(1)$ time. Such a structure can also be constructed from the given bitstring in $O(n)$ time and space.

For any $a \in \{0, 1\}$, the rank and select operations are defined as follows:

- $\text{rank}_a(B, i) =$ the number of occurrences of a in $B[1,i]$, for $1 \leq i \leq n$;
- $\text{select}_a(B, i) =$ the position in B of the i-th occurrence of a, for $1 \leq i \leq n$.

When the bitvector B is sparse, the space overhead of $o(n)$ bits can be avoided by using the following theorem, which will also be used later in our paper.

▶ **Theorem 4** ([21]). We can store a bitstring B of length n with m 1s using $m \log(n/m) + O(m)$ bits such that $\text{select}_1(B, 1)$ can be supported in $O(1)$ time, $\text{select}_0(B, 1)$ in $O(\log m)$ time, and both the rank queries ($\text{rank}_1(B, i)$ and $\text{rank}_0(B, i)$) can be supported in $O(\min(\log m, \log n/m))$ time. Such a structure can also be constructed from B in $O(n)$ time and space.
Permutation. We also use the following theorem:

- **Theorem 5** ([19]). A permutation π of length n can be represented using \((1+\epsilon)n \lg n\) bits so that \(\pi(i)\) is answered in \(O(1)\) time and \(\pi^{-1}\) in time \(O(1/\epsilon)\) for any constant \(\epsilon > 0\). Such a representation can be constructed using \(O(n)\) time and space.

Succinct Tree Representation. We need following result from [15].

- **Theorem 6** ([15]). There exists a data structure to succinctly encode an ordered tree with \(n\) nodes using \(2n + o(n)\) bits such that, given a node \(v\), \(a)\) \(\text{child}(v,i)\): \(i\)-th child of \(v\), \(b)\) \(\text{degree}(v)\): number of children of \(v\), \(c)\) \(\text{depth}(v)\): depth of \(v\), \(d)\) \(\text{select}_{\text{pre}}(v)\): position of \(v\) in preorder, \(e)\) \(\text{LA}(v,i)\): ancestor of \(v\) at level \(i\) can be supported in \(O(1)\) time among many others. Such a structure can also be constructed in \(O(n)\) time and space.

3 Algorithms in the Indexing Model

In this section, we provide the main algorithmic ideas needed for the solution of the DFS-Indexing problem in the indexing model. We start by describing the preprocessing procedure which is followed by the query algorithms.

3.1 Preprocessing Step

We first describe our algorithms for undirected graphs, and later mention the modifications required for the case of directed graphs. The preprocessing step of the algorithm is divided into two parts. In the first part, we perform a DFS of the input graph \(G\) along with storing some necessary data structures. In the second step, we perform a partition of the DFS tree of \(G\) using the well-known “tree covering technique” of the succinct data structures world [14], and also store some auxiliary data structures. Later, in the final step of our algorithm, we show how to use these data structures to answer the required queries. In what follows, we describe each step in detail.

Step 1: Creating Parent-Child Array using Unary Degree Sequence Array.

The main idea of this step is to perform a DFS traversal of \(G\) and store in a compact way the parent-child relationship of the DFS tree \(T\). The way we achieve this is by using three bitvectors of length \(O(m + n)\) bits. Recall that, our input graphs \(G = (V,E)\) are represented using the standard adjacency array. Central to our preprocessing algorithm is an encoding of the degrees of the vertices in unary. As usual, let \(V = \{v_1,v_2,\ldots,v_n\}\) be the vertex set of \(G\).

The unary degree sequence encoding \(D\) of the undirected graph \(G\) has \(n\) 1s to represent the \(n\) vertices and each 1 is followed by a number of 0s equal to its degree. Moreover, if \(d\) is the degree of vertex \(v_i\), then \(d\) 0s following the \(i\)-th 1 in the \(D\) array corresponds to \(d\) neighbors of \(v_i\) (or equivalently the edges from \(v_i\) to the \(d\) neighbors of \(v_i\)) in the same order as in the adjacency array of \(v_i\). Clearly \(D\) uses \(n + 2m\) bits and can be obtained from the neighbors of each vertex in \(O(m + n)\) time. Now using \(\text{rank}/\text{select}\) queries of Theorem 3 in Section 2, the \(j\)-th outgoing edge of vertex \(v_i\) can be identified with the position \(p = \text{select}_1(D,i)+j\) of \(D\) \((1 \leq j \leq \text{degree}(v_i)\) where \(\text{degree}(v_i)\) denotes the degree of the vertex \(v_i\). From a position \(p\), we can obtain an endpoint of the corresponding edge by \(i = \text{rank}_1(D,p)\), and the other endpoint is the \(j\)-th neighbor of \(v_i\) where \(j = p - \text{select}_1(D,i)\).

We also use two bitvectors \(E, P\) of the same length where every bit is initialized to 0, and the bits in \(E, P\) are in one-to-one correspondence with bits in \(D\). The bitvector \(E\) will be used to mark the tree edges of the DFS tree \(T\), and the bitvector \(P\) to mark the unique
parent of every vertex in T. The marking is carried out while performing a DFS of G in the preprocessing step. I.e., if (v_i, v_j) is an edge in the DFS tree where v_i is the parent of v_j, and suppose k is the index of the edge (v_i, v_j) in D, then the corresponding location in E is marked as 1 during DFS. At the same time, we scan the adjacency array of v_j to find the position of v_i (as G is undirected, there will be two entries for each edge in the adjacency array), and suppose t is the index of the edge (v_j, v_i) in D, then the corresponding location in P is marked as 1 during DFS. Thus, assuming G is a connected graph, once DFS finishes traversing G, the number of ones in E is exactly the number of tree edges (which is $n - 1$) and the number of ones in P will be $n - 1$ as root does not have any parent.

The parent of v_i in T is computed in $O(1)$ time as follows. Let v_r be the root of T. Then if $i > r$ (resp. $i < r$), the marked bit representing the parent of v_i is the $(i-1)$-st (resp. i-th) 1 in P. Let $p = \text{select}_1(P, i-1)$ (resp. $p = \text{select}_1(P, i)$) and $j = p - \text{select}_1(D, i)$. Then the parent of v_i is the j-th neighbor of v_r.

We use another bitvector D_T of length $2n$, which encodes the degree of each vertex in T by unary sequences. Then the degree of vertex v_i in T is $\text{select}_1(D_T, i) - \text{select}_1(D_T, i - 1)$, and j-th child of v_i in T is p-th neighbor of v_i in G where $p = \text{select}_1(E, \text{select}_1(D_T, i-1) + j) - \text{select}_1(D, i)$. These are computed in constant time.

Note that, the classical linear time implementation of DFS [12] uses a stack (which could grow to $O(n \lg n)$ bits) and a color array (of size $O(n)$ bits). Thus, the procedure takes $O(m + n)$ time and $O(n \lg n)$ bits overall. First, we argue that using the same linear time, we can also create bitvectors D, E and P and fill up them correctly. It’s easy to see that creating D as well as initializing E and P to all zero takes $O(m + n)$ time. All it remains is to show, how one can fill up E and P while performing DFS. For this purpose, we build the data structures to support the constant time rank/select query (of Theorem 3) on D (and on E, P as well, the reason will be clear in the query step) and use the result of the select query to mark the tree edges in E (as they are in one-to-one correspondence). To illustrate, suppose, while traversing from v_i, DFS discovers the edge (v_i, v_j) as a tree edge in T where v_i is the parent of v_j, and suppose v_j is the c-th neighbor in v_i’s adjacency array, then we find the index of the c-th zero after i-th one in D (using select query), and the corresponding index is marked as 1 in the E array. This takes $O(1)$ time for each tree edge marking. After this, we mark the index in P as 1 corresponding to the edge (v_j, v_i) to denote that v_i is the parent of v_j. Thus, marking parent takes $O(\text{degree}(v_j))$ time for the vertex v_j. Note that, all of this happens along with the classical stack-based DFS implementation. Thus overall it takes $O(m + n)$ time, and space required to store all these arrays is $O(m + n)$ bits. We refer to the bitvector D as the unary degree sequence array, E as the child array, and P the parent array. These three arrays are stored and used for the query step of our algorithm. Thus, we obtain the following lemma.

\textbf{Lemma 7.} Given an undirected graph G, there exists an $O(m + n)$ time and $O(n \lg n)$ bits preprocessing algorithm to construct the unary degree sequence array, parent and child arrays for G, each of which takes $O(m + n)$ bits of space.

\textbf{Step 2: Decomposing the DFS tree by the Tree Covering Technique.} The main idea of this step is to perform a decomposition of the DFS tree, and along with storing some crucial informations which will be very useful for navigating the tree during the query step of our algorithm. For this purpose, we use the well-known tree covering technique in the context of succinct representation of rooted ordered trees. The high level idea is to decompose the tree into subtrees called \textit{minitrees}, and further decompose the minitrees into yet smaller subtrees called \textit{microtrees}. The microtrees are small enough to be stored in a compact table. The root
Figure 1 An example of Tree Covering technique with $L = 5$. Each closed region formed by the dotted lines represents a minitree. Here each minitree has at most one "child" minitree (other than the minitrees that share its root).

of a minitree can be shared by several other minitrees. To represent the tree, we only have to represent the connections and links between the subtrees. One such tree decomposition method was given by Farzan and Munro [14] where each minitree has at most one node, other than the root of the minitree, that is connected to the root of another minitree. This guarantees that in each minitree, there exists at most one non-root node which is connected to (the root of) another minitree. We use this decomposition in our algorithms, and the main result of Farzan et al. [14] is summarized in the following theorem:

▶ Theorem 8 ([14]). For any parameter $L \geq 1$, a rooted ordered tree with n nodes can be decomposed into $\Theta(n/L)$ minitrees of size at most $2L$ which are pairwise disjoint aside from the minitree roots. Furthermore, aside from edges stemming from the minitree root, there is at most one edge leaving a node of a minitree to its child in another minitree. The decomposition can be performed in linear time using linear words of space.

See Figure 1 for an illustration. For the purpose of our algorithms, we apply Theorem 8 with $L = \lg n$ on the DFS tree T of G. For this parameter L, since the number of minitrees is only $O(n/\lg n)$, we can represent the structure of the minitrees within the original tree (i.e., how the minitrees are connected with each other) using $O(n)$ bits by simply storing both way pointers (so that we can traverse easily) between the roots of the minitrees. We refer to this as the skeleton S of the DFS tree T. See Figure 2 for a demonstration of Figure 1’s skeleton. The decomposition algorithm of [14] also ensures that each minitree has at most one “child” minitree (other than the minitrees that share its root) in this structure. We use this property crucially later.
In what follows, we explain how we compactly represent the minitree structure, and we refer to this compact representation obtained using this tree covering (TC) approach as the TC representation of the DFS tree. Towards this, first observe that every minitree root has unique first child and last child inside the minitree. In some cases, both are the same (see the minitree rooted at node \(d \) of Figure 1), and in some cases, both are absent (see the minitree rooted at node \(o \) of Figure 1). Thus, if we specify these two quantities, we can uniquely identify the root of the minitree (along with the exact portion of the nodes which are children of the root of this minitree and also belong to the same minitree as the first and last child of the root) even though the root is shared between multiple minitrees. We use this idea crucially in the design of the TC representation of the DFS tree.

We mark in a bitvector \(R \) of size \(n \) all the nodes which are the last child of a minitree root inside a minitree. Note that, there are \(O(n/\lg n) \) such nodes which are marked as 1 in \(R \). In the case of a minitree root not having any children, we mark the minitree root itself as 1 in \(R \). We also build the data structure to support \(O(1) \) time rank/select queries on \(R \) using Theorem 3. Next, we create an array \(C \) where each of the \(O(n/\lg n) \) entries are \(O(\lg n) \) bits long, thus overall it takes \(O(n) \) bits. Basically, each entry of \(C \) stores some informations regarding the minitree for which the last child of the minitree root is marked 1 in \(R \). More specifically, For a typical node, say \(v_i \), which is the last child of some minitree, we have \(R[i] = 1 \), and \(C[j] \) (where \(j = \text{rank}_1(R, i) \)) comprises of the following six informations (some of which could be empty), (i) label of the minitree root, say \(v_r \), for which \(v_i \) is the last child inside the minitree, (ii) location of the first child, say \(v_j \), of \(v_r \) inside the minitree in the adjacency array of \(v_r \), (iii) DFI of \(v_j \), (iv) the edge \((v_c, v_d)\) (if any) that goes out of the minitree, (v) the size of the subtree rooted at \(v_c \) in the DFS tree, (vi) depth of \(v_r \) in the
DFS tree. The tree decomposition method ensures that a minitree has at most one edge
\((v_c, v_d)\), where \(v_c\) is a non-root node of minitree and \(v_d\) is a root of a different minitree, that
goes out of the minitree. We also mark in a bitvector \(Z\) of size \(n\) bits all such vertices like
\(v_c\) (also note, there could be \(O(n/\log n)\) such vertices). We mark in a bitvector \(L\) all the
vertices which are the rightmost leaves of every minitree. Note that these vertices (there are,
again, \(O(n/\log n)\) of them) have the highest DFI inside the minitree. In another bitvector
\(A\), we mark all the roots of the minitrees as 1, and build rank/select structure on top of \(A\).
Correspondingly, the \(F\) array will store the DFI of the roots so that we can retrieve them in
constant time. More specifically, for a minitree root \(v_r\), \(A[r] = 1\) and \(F[j] \ (j = \text{rank}_1(A, r))\)
will store the DFI of \(v_r\). Next we build the \(O(1)\) time level ancestor data structure, say
\(LA\), on the \(O(n/\log n)\) minitree roots (i.e., on the skeleton structure) using [4]. Thus, here,
\(LA\) takes \(O(n)\) bits and \(O(n)\) time. As a root of the minitree is shared between multiple
minitrees, from each node \(v_i\) of the skeleton \(S\) (where \(v_i\) is a root of a minitree), we store
pointers to all the minitrees (in \(C\) array) which has \(v_i\) as their root. Overall these pointers
also consume \(O(n)\) bits. This completes the description of the TC representation. Note that,
the creation of the skeleton and the TC representation for \(T\) can be done in \(O(n)\) time using
\(O(n\log n)\) bits (using Theorem 8) after the DFS (which takes \(O(m + n)\) time and \(O(n\log n)\)
bits). Hence, we obtain the following,

\textbf{Lemma 9.} Given an undirected graph \(G\), there exists an \(O(m + n)\) time and \(O(n\log n)\) bits
preprocessing algorithm to construct the skeleton \(S\) and the TC representation of the DFS
tree \(T\) of \(G\), each of which occupies \(O(n)\) bits.

First observe that, the outputs of the previous step are the unary degree sequence array
\((D)\), parent array \((E)\), child array \((P)\), the \(D_T\) array, TC representation of \(T\) (this includes
\(R, C, Z, A, F\) and \(L\)) along with the skeleton \(S\) with pointers to \(C\), and finally the \(LA\)
structure on \(S\). The arrays \(D, E, P\) take \(O(m + n)\) bits, and the others take \(O(n)\) bits.
Now we show how to efficiently solve the DFS-indexing problem using these structures.

\textbf{Query Algorithms.} Given \(v_i\), to answer 2(a) in \(O(1)\) time, we do the following. If \(v_i\) is the
root of the DFS tree, we return null. Otherwise, we can compute the answer by using only
\(select_1\) queries on \(P\) and \(D\), as described previously.

To answer 2(b) in \(O(1)\) time, we use \(select_1\) queries on the bitvector \(D_T\).

To answer 2(c), we first compute the number of children of \(v_i\) in \(T\) using the query 2(b).
Then \(j\)-th child is obtained in constant time as described above.

Note that, the queries 2(a), 2(b) and 2(c) can be answered using only \(D, E, P\) and
\(D_T\) arrays. Before explaining the algorithms for the rest of the queries, we first prove the
following very crucial lemma.

\textbf{Lemma 10.} Given any query node \(v_i\) which is not a root of a minitree, we can reconstruct
the minitree \(M\) containing \(v_i\) in time proportional to the size of \(M\) along with the DFIs of all
the nodes inside \(M\). In the same amount of time, we can also retrieve the root node of \(M\).

\textbf{Proof.} First note that if a node \(v\) belongs to the minitree \(M\), its children in \(T\) also belong
to \(M\), except for the following two cases. The first case is that \(v\) is the root \(v_r\) of \(M\) and
the second case is that \(v\) is \(v_c\) of \(M\). In the first case, as we have stored the location (in the
adjacency array) of the first child, say \(v_j\), of \(v_r\) inside \(M\) in the \(C\) array, we can enumerate
all the children of \(v_r\) in \(M\) in constant time for each until we hit the rightmost child of \(v_r\) in
\(M\), which is stored in \(R\). In the second case, we can also enumerate all the children of \(v_c\)
in T in constant time for each and discard v_i. For other vertices in M, we can enumerate children using constant time for each output. Note also that going to the parent can be performed in constant time.

The algorithm to achieve the claim can be broken down into three steps. In the first step, given v_i, we launch a DFS starting from v_i, and continue till we retrieve the rightmost leaf, say v_j, of the minitree M. In second step, we follow the path in T (by going to v_j’s parent, then its parent and so on) till we reach the rightmost child, say v_k, of the root, say v_r, inside M by using the query algorithm to find the parent repeatedly. In the third and final step, we use the C array, by using v_k, to extract all the informations needed to reconstruct the full minitree by performing another round of DFS. We provide the details below.

To perform the first step, we only need to use the parent and child related queries, whose execution we already showed previously. Note that, as we have stored the information (in Z array) regarding the only edge that goes out of the minitree, we never incorrectly go out of M. Also we can verify if we have reached the unique node v_j which is the rightmost leaf of M from the L array. Once we reach v_j, it’s easy to see that v_k has to be an ancestor of v_j (note that v_k and v_j could be same in some cases). Thus, we can reach v_k from v_j by repeatedly using the parent query algorithm, and this completes the second step. Finally, once we reach v_k, we use the informations in $C[j]$ (where $j = \text{rank}_1(R,k)$) to retrieve the root v_r of M and other informations. Then we carry out a DFS from v_r by first going to the first child of v_r inside M (retrieved from C), then its first child and so on till we fully reconstruct M. This step also requires repeated invoking of parent and child query only.

In order to retrieve the DFIs of the nodes inside M, observe that, if M doesn’t have any child minitree (i.e., no edge is going out of M), then while doing the final DFS from v_r, we can easily compute the DFIs of all the nodes inside M. Otherwise, assume the edge (v_c,v_d) goes out of M where v_c belongs to M, then the DFI of next node inside M can be calculated by adding the size of the subtree rooted at v_c in T (which is stored in C to the DFI of v_c.

It is clear that all of these procedures can be performed in the time proportional to the size of M, which is $O(\log n)$ here. This completes the description of the proof.

As a corollary of the previous lemma, it is easy to see that the query of 2(d) can be reported in $O(\log n)$ time for any node v_i which is not a root of the minitree. Otherwise, it can be done in $O(1)$ time by reporting the value stored in $F[j]$ where $j = \text{rank}_1(A,i)$.

To answer 1(a), first we invoke query algorithm of 2(d) for both v_i and v_j to retrieve their DFIs respectively, and then answer accordingly. Thus, this also takes $O(\log n)$ time.

Answering 1(b) involves a few cases. In the first case, if both of them belong to the same minitree then we can figure out the answer by reconstructing the complete minitree. Secondly, suppose v_i and v_j are roots of the two separate minitrees, and their depths in T are x and y respectively (depth can be obtained from C array). Then using these values in LA data structure, we can figure out the required answer. Finally, if both of these nodes belong to two separate minitrees but are not the roots of the minitrees, then first we retrieve the roots of those minitrees using Lemma 10, then follow almost the same procedure as before to figure out the answer. Note that, in this case, it is enough to reconstruct the path from v_c (of the minitree located near to the root) to the root of that minitree (for the case when one of the minitree root is an ancestor of the other minitree root) to figure out the answer of the query. Thus, overall, it takes $O(\log n)$ time.

To return the query for 3, we do a standard DFS traversal on the skeleton S and each time we visit a new node v_i in S, we follow the pointer from v_i in S to the part of the C array where the informations regarding the minitree rooted at v_i is stored. Note that, v_i might be shared between multiple minitrees, hence, we always start following these pointers from left...
to right. More specifically, if v_i is the root of p minitrees, we have p pointers emanating from v_i, and going to p different locations of C array. As these pointers are stored from left to right order, which is the same order in DFS of all the minitrees that share the root v_i. Thus we follow the first pointer, and reach the specific portion of C, use Lemma 10 to generate the complete minitree along with the DFIs of the nodes. Then if this minitree has any child minitree, we go on to explore that and so on (by following the (v_c, v_d) edge stored in that minitree). Once we finish all the descendant minitree of the first minitree rooted at v_i, we come back and start exploring the second minitree (by following the second pointer from v_i) and so on. Thus, we need to store these intermediate pointers, in stack, to know how much progress has been made in every node's (in skeleton) list. This procedure is continued until all the nodes of S are exhausted. It is clear that this procedure takes $O(n)$ time as there are $O(n/\lg n)$ nodes in S and for each node, we spend $O(\lg n)$ time. Also, we need $O(n)$ bits (as there could be $O(n/\lg n)$ pointers) of intermediate space for the execution of the DFS.

To answer 4, first note that, in any minitree M, if there is no edge going out (i.e., no (v_c, v_d) type edge), then the DFIs inside M are consecutive, i.e., in general, first child of root inside M has the smallest DFI and the rightmost leaf in M has the maximum DFI, and the numbers are consecutive. Otherwise, DFIs are consecutive from the root of M to the DFI of v_c, then there is a jump of DFI by the size of the subtree rooted at v_i in the DFS tree, then it’s consecutive DFI again until the rightmost leaf (which has the largest DFI inside M) of M. Thus, the range of DFIs of the vertices inside any arbitrary minitree M can be broken into at most two disjoint consecutive intervals. We store these (at most $O(n/\lg n)$) intervals in an interval tree along with augmenting it with the last child of M inside M. Now, given i, we first find the interval where i belongs to from the tree and simultaneously retrieve the last child, say v_a, of the corresponding minitree, all using $O(\lg n)$ time. Then, we use the information from R and C array corresponding to v_a to invoke Lemma 10, and retrieve the desired vertex with DFI i using $O(\lg n)$ overall time. This completes the description of the query algorithms for undirected graphs.

We can handle directed graphs similarly except a few changes in the data structures. Recall that, for directed graphs, every vertex v_i has access to its in-neighbors array as well as out-neighbors array, and additionally we create two unary degree sequence arrays (each of size $O(m+n)$ bits), D_1 for the out-neighbors and D_2 for the in-neighbors. We also have two separate arrays, say E_1 (having one-to-one map with D_1), for marking child of every node and E_2 (having one-to-one map with D_2) where parents are marked. It is easy to see that almost in a similar fashion as in the undirected case, we can correctly mark, for any node v_i, the children of v_i in E_1 array and parent of v_i in E_2 array using both the D_1 and D_2 arrays while performing DFS of G. The second preprocessing step doesn’t require any changes for the directed graphs. Now reporting queries also can be suitably modified to make use of these changes without affecting the asymptotic running time of the query algorithms. Basically the only change that takes place is as follows, whenever we need to find the parent of a node, now we need to use the in-neighbor array whereas finding children can be handled by consulting out-neighbor array along with the mapping with their respective unary degree sequence array. We omit the details. Thus, we obtain the following

\textbf{Theorem 11.} Given any undirected or directed graph G, there exists an $O(m+n)$ time and $O(n\lg n)$ bits preprocessing algorithm which outputs a data structure of size $O(m+n)$ bits, using which the queries 1(a), 1(b), 2(d) and 4 can be reported in $O(\lg n)$ time, 2(a) and 2(b) in $O(1)$ time, 2(c) can be answered in time proportional to the number of solutions, and finally 3 can be solved in $O(n)$ time respectively for the DFS-Indexing problem.
Note that, if the given input graph is sparse (i.e., \(m = O(n) \)), then both unary degree sequence array \((D) \), and parent and child arrays \((E, P) \) take \(O(n) \) bits, and every other data structure anyway takes \(O(n) \) in total, thus, we obtain the result mentioned in Theorem 1 for the case of sparse graphs. When the input graph is dense (i.e., \(m = \omega(n) \)), we compress the \(D, E, P \) arrays using Theorem 4. Note that we use only \textit{select}\(_1\) queries on compressed arrays and thus query time complexity on the arrays is still constant. Hence, we obtain the result of Theorem 1 for the dense graph case. It is worth mentioning that except the case for very dense graphs, our space bound always beats the space bound of the naive algorithm for every edge density in the full spectrum, albeit with super-constant query time. Thus, when the graph is sufficiently dense, it is better to use the standard solution which uses \(O(n \log n) \) bits with constant query time. This completes the description of our algorithms in the indexing model, and hence, the proof of Theorem 1.

4 Algorithms in the Encoding Model

Recall that in the encoding model, we seek to build a data structure \(\textit{encod} \) after preprocessing the input graph \(G \) such that queries have to be answered using \(\textit{encod} \) only, without accessing \(G \). To this end, we first provide a lower bound for the space needed for \(\textit{encod} \) to answer queries of the \textit{DFS-Indexing} problem.

4.1 Space lower-bound

Observe that, in order to correctly answer the queries, the data structure \(\textit{encod} \) must contain the information regarding the topology of the DFS tree \(T \) of the graph \(G \) along with the labels of the vertices of \(T \) as, unlike the indexing model, we don’t have the access to \(G \) during the query time. It’s easy to see that we need \(\Omega(n \log n) \) bits to store the vertex labels mappings. In what follows, we give a proof for the space needed to store the topology of the DFS tree by counting the number of such trees in any arbitrary graph \(G \).

▶ **Lemma 12.** For a graph with \(n \) vertices and \(m \) edges, the size of data structures for storing the topology of the DFS trees is \(\Omega(n \log \frac{m}{n}) \) bits.

Proof. Let us consider the following graph \(G \) with \(n \) vertices and \(m \) edges \((m < n^2/2) \). It has a vertex \(r, \ k = m/n \) vertices \(v_1, \ldots, v_k \), and \(n - k - 1 \) vertices \(v_1, \ldots, v_{n-k-1} \). The vertex \(r \) is connected to all \(u_i \), and each \(v_j \) is also connected to all \(u_i \). To construct a spanning tree of \(G \), we choose one edge among all \(k \) edges connected to each \(v_j \). Then the number of different spanning trees of \(G \) is at least \(k^{n-k-1} \), and for all different spanning trees the set of DFI’s are different. Therefore the size of data structure must be at least \(\log k^{n-k-1} \) bits, which is \(\Omega(n \log \frac{m}{n}) \).

Thus, the space lower bound for \(\textit{encod} \) is \(\Omega(\max\{n \log \frac{m}{n}, n \log n\}) \) bits, which is \(\Omega(n \log n) \) bits as mentioned in Theorem 2. In what follows, we complement the above claim by providing a simple indexing structure which asymptotically matches this lower bound.

4.2 Upper-bound

Preprocessing Step. Our index for the \textit{DFS-Indexing} problem consists of two components which we prepare during the preprocessing step. In the first component, we store, for every vertex \(v_i \), \(\text{DFI}(v_i) \) as permutation using the structure of Theorem 5 of Section 2. Second, we encode the DFS tree succinctly using the structure of Theorem 6 of Section 2.
Query Algorithm. We answer the queries using the two above mentioned structures as follows. To answer 2(d), we just use $\pi(i)$. Similarly, 4 can be answered by invoking $\pi^{-1}(i)$.

We report v_i (resp. v_j) as the answer for query 1(a) if $\pi(i) < \pi(j)$ (resp. $\pi(i) > \pi(j)$).

We enumerate the vertex ordering as traversed in the DFS order by invoking $\pi^{-1}(1)$, then $\pi^{-1}(2)$, and so on till $\pi^{-1}(n)$. We answer 1(b) in affirmative by checking if $LA(v_j, \text{depth}(v_i))$ matches with v_i, otherwise no. To answer 2(a), we return $LA(v_i, \text{depth}(v_i) - 1)$. We return the answer of 2(b) by using the query $\text{degree}(v_i)$. Finally, we enumerate the children of a node v_i as requested in query 2(c) by using the query $\text{child}(v_i, 1)$ till $\text{child}(v_i, \text{degree}(v_i))$. Hence we obtain the results mentioned in Theorem 2.

5 Conclusion

In this paper, we provided procedures for compactly storing the DFS tree for any graph with efficiently supporting various queries in the indexing and encoding models, and showed how to extend these techniques to design indexing schemes for other fundamental and basic graph problems. With some work, our algorithm can be extended for indexing BFS tree (and other graph search tree also) as well while supporting similar types of queries. Also, as mentioned previously, our results are more general, and can be used in other situations as well.

This work opens up many possible future directions to explore. Can we further improve the query time while keeping the space bound same in the indexing model? Can we prove a space lower bound in the indexing model? Can we design compact data structures for indexing problems like maximum flow? Finally, we conclude by remarking that using [2, 9], we can improve the preprocessing space of our algorithms to $O(n)$ bits (from $O(n \lg n)$ bits) with marginal increment in the preprocessing time.

References