Linear Transformations Between Colorings in Chordal Graphs

Nicolas Bousquet
Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, France
nicolas.bousquet@ grenoble-inp.fr

Valentin Bartier
Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, France
valentin.bartier@ grenoble-inp.fr

Abstract
Let k and d be such that $k \geq d + 2$. Consider two k-colorings of a d-degenerate graph G. Can we transform one into the other by recoloring one vertex at each step while maintaining a proper coloring at any step? Cereceda et al. answered that question in the affirmative, and exhibited a recolouring sequence of exponential length.

If $k = d + 2$, we know that there exists graphs for which a quadratic number of recolorings is needed. And when $k = 2d + 2$, there always exists a linear transformation. In this paper, we prove that, as long as $k \geq d + 4$, there exists a transformation of length at most $f(\Delta) \cdot n$ between any pair of k-colorings of chordal graphs (where Δ denotes the maximum degree of the graph). The proof is constructive and provides a linear time algorithm that, given two k-colorings c_1, c_2 computes a linear transformation between c_1 and c_2.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases graph recoloring, chordal graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.24

Funding This work was supported by ANR project GrR (ANR-18-CE40-0032).

1 Introduction

Reconfiguration problems consist in finding step-by-step transformations between two feasible solutions of a problem such that all intermediate states are also feasible. Such problems model dynamic situations where a given solution already in place has to be modified for a more desirable one while maintaining some properties throughout the transformation. Reconfiguration problems have been studied in various fields such as discrete geometry [6], optimization [1] or statistical physics [22] in order to transform, generate, or count solutions. In the last few years, graph reconfiguration received a considerable attention, e.g. reconfiguration of independent sets [3, 21], matchings [7, 20], dominating sets [24] or fixed-degree sequence graphs [9]. For a complete overview of the reconfiguration field, the reader is referred to the two recent surveys on the topic [23, 25].

Two main questions are at the core of combinatorial reconfiguration. (i) Is it possible to transform any solution into any other? (ii) If yes, how many steps are needed to perform this transformation? These two questions and their algorithmic counterparts received considerable attention.
Graph recoloring

Throughout the paper, $G = (V, E)$ denotes a graph, $n = |V|$, Δ denotes the maximum degree of G, and k is an integer. For standard definitions and notations on graphs, we refer the reader to [15]. A (proper) k-coloring of G is a function $f : V(G) \rightarrow \{1, \ldots, k\}$ such that, for every edge $xy \in E$, we have $f(x) \neq f(y)$. Since we will only consider proper colorings, we will then omit the proper for brevity. The chromatic number $\chi(G)$ of a graph G is the smallest k such that G admits a k-coloring. Two k-colorings are adjacent if they differ on exactly one vertex. The k-reconfiguration graph of G, denoted by $\mathcal{G}(G, k)$ and defined for any $k \geq \chi(G)$, is the graph whose vertices are k-colorings of G, with the adjacency condition defined above. Cereceda, van den Heuvel and Johnson provided an algorithm to decide whether, given two 3-colorings, one can transform one into the other in polynomial time and characterized graphs for which $\mathcal{G}(G, 3)$ is connected [12, 13]. Given any two k-colorings of a graph, it is PSPACE-complete to decide whether one can be transformed into the other for $k \geq 4$ [5].

The k-recoloring diameter of a graph G is the diameter of $\mathcal{G}(G, k)$ if $\mathcal{G}(G, k)$ is connected and is $+\infty$ otherwise. In other words, it is the minimum D for which any k-coloring can be transformed into any other one through a sequence of at most D recolorings. Bonsma and Cereceda [5] proved that there exists a class \mathcal{C} of graphs and an integer k such that, for every graph $G \in \mathcal{C}$, there exist two k-colorings whose distance in the k-reconfiguration graph is finite and super-polynomial in n.

A graph G is d-degenerate if any subgraph of G admits a vertex of degree at most d. In other words, there exists an ordering v_1, \ldots, v_n of the vertices such that for every i, v_i has at most d neighbors in v_{i+1}, \ldots, v_n. It was shown independently by Dyer et al [16] and by Cereceda et al. [12] that for any d-degenerate graph G and every $k \geq d + 2$, $\mathcal{G}(G, k)$ is connected. Note that the bound on k is the best possible since the $\mathcal{G}(K_n, n)$ is not connected. Cereceda [11] conjectured the following:

Conjecture 1 (Cereceda [11]). For every d, every $k \geq d + 2$, and every d-degenerate graph G, the diameter of $\mathcal{G}(G, k)$ is at most $C_d \cdot n^2$.

If true, the quadratic function is the best possible, even for paths, as shown in [2]. Bousquet and Heinrich [8] recently proved that the diameter of $\mathcal{G}(G, k)$ is $O(n^{d+1})$. In the general case, Cereceda’s conjecture is only known to be true for $d = 1$ (trees) [2] and $d = 2$ and $\Delta \leq 3$ [18]. The diameter of $\mathcal{G}(G, k)$ is $O(n^2)$ when $k \geq \frac{3}{2}(d + 1)$ as shown in [8]. Even if Cereceda’s conjecture is widely open for general graphs, it has been proved for a few graph classes, e.g., chordal graphs [2], bounded treewidth graphs [4], and bipartite planar graphs [8].

Jerrum conjectured that if $k \geq \Delta + 2$, the mixing time (time needed to approach the stationary distribution) of the Markov chain of graph colorings is $O(n \log n)$. So far, the conjecture has only been proved if $k \geq \left(\frac{11}{9} - \epsilon\right)\Delta$ [14]. Since the diameter of the reconfiguration graph is a lower bound of the mixing time, a lower bound on the diameter is of interest to study the mixing time of the Markov chain. In order to obtain such a mixing time, we need an (almost) linear diameter.

The diameter of $\mathcal{G}(G, k)$ is linear if $k \geq 2d + 2$ [10] or if k is at least the grundy number of G plus 1 [4]. When $k = d + 2$, the diameter of $\mathcal{G}(G, k)$ may be quadratic, even for paths [2]. But it might be true that the diameter of $\mathcal{G}(G, k)$ is linear whenever $k \geq d + 3$. In this paper, we investigate the following question, raised for instance in [8]: when does the k-recoloring diameter of d-degenerate graphs become linear?

1 A random walk on $\mathcal{G}(G, k)$. For more details on Markov chains on graph colorings, the reader is for instance referred to [14].
Our results

A graph is chordal if it does not contain any induced cycle of length at least 4. Chordal graphs admit a perfect elimination ordering, i.e., there exists an ordering \(v_1, \ldots, v_n\) of \(V\) such that, for every \(i\), \(N[v_i] \cap \{v_{i+1}, \ldots, v_n\}\) is a clique. Chordal graphs are \((\omega(G) - 1)\)-degenerate where \(\omega(G)\) is the size of a maximum clique of \(G\). Our main result is the following:

\begin{itemize}
 \item Theorem 2. Let \(\Delta\) be a fixed integer. Let \(G\) be a \(d\)-degenerate chordal graph of maximum degree \(\Delta\). For every \(k \geq d + 4\), the diameter of \(G(G, k)\) is at most \(O_{\Delta}(n)\). Moreover, given two colorings \(c_1, c_2\) of \(G\), a transformation of length at most \(O_{\Delta}(n)\) can be found in linear time.
\end{itemize}

Theorem 2 improves the best existing upper bound on the diameter of \(G(G, k)\) (where \(G\) is chordal) which was quadratic up to \(k = 2d + 1\) [10].

Note that the bound on \(k\) is almost the best possible since we know that this result cannot hold for \(k \leq d + 2\) [2]. So there is only one remaining case which is the case \(k = d + 3\).

\begin{itemize}
 \item Question 3. Is the diameter of \(G(G, d + 3)\) at most \(f(\Delta(G)) \cdot n\) for any \(d\)-degenerate graph \(G\)?
\end{itemize}

In some very restricted cases (such as power of paths), our proof technique can be extended to \(k = d + 3\), but this is mainly due to the very strong structure of these graphs. For chordal graphs (or even interval graphs), we need at least \(d + 4\) colors at several steps of the proof and decreasing \(k\) to \(d + 3\) seems to be a challenging problem.

We also ask the following question: is it possible to remove the dependency on \(\Delta\) to only obtain a dependency on the degeneracy? More formally:

\begin{itemize}
 \item Question 4. Is the diameter of \(G(G, d + 3)\) at most \(f(d) \cdot n\) for any \(d\)-degenerate chordal graph \(G\)?
\end{itemize}

The best known result related to that question is the following: \(G(G, k)\) has linear diameter if \(k \geq 2d + 2\) (and \(f\) is a constant function) [10].

\begin{itemize}
 \item Question 5. Is the diameter of \(G(G, d + 3)\) at most \(f(\Delta(G)) \cdot n\) for any bounded treewidth graph \(G\)?
\end{itemize}

Our proof cannot be immediately adapted for bounded treewidth graphs since we use the fact that all the vertices in a bag have distinct colors. Feghali [17] proposed a method to “chordalize” bounded treewidth graphs for recoloring problems. However, his proof technique does not work here since it may increase the maximum degree of the graph. We nevertheless think that our proof technique can be adapted in order to study many well-structured graph classes.

Proof outline

In order to prove Theorem 2, we introduce a new proof technique to obtain linear diameters for recoloring graphs. The existing results (e.g., [10]) ensuring that \(G(G, k)\) has linear diameter are based on inductive proofs that completely fail when \(k\) is close to \(d\). On the other hand, in the proofs giving quadratic diameters (e.g., [2]), the technique usually consists in finding two vertices that can be “identified” and then applying induction on the reduced graph. In that case, even if we can identify two vertices after a constant number of single vertex recolorings, we only obtain a quadratic diameter (since each vertex might “represent” a linear number of initial vertices). Both approaches are difficult to adapt to obtain linear transformations since they do not use or “forget” the original structure of the graph.
Let us roughly describe the idea of our method on interval graphs. A buffer \(B \) is a set of vertices contained in \(f(\omega) \) consecutive cliques of the clique path. We assume that at the left of the buffer, the coloring of the graph already matches the target coloring. We moreover assume that the coloring of \(B \) is special in the sense that, for every vertex \(v \) in \(B \), at most \(d + 2 \) colors appear in the neighborhood of \(v \). Note that in order to satisfy this property (and several others detailed in Section 2), the buffer has to be “long enough”. The main technical part of the proof consists in showing that if the buffer is “long enough”, then we can modify the colors of vertices of the buffer in such a way that the same assumptions hold for the buffer starting one clique to the right of the starting clique of \(B \). We simply have to repeat at most \(n \) times this operation to guarantee that the coloring of the whole graph is the target coloring. Since a vertex is recolored only if it is in the buffer and a vertex is in the buffer a constant (assuming \(\Delta \) constant) number of times, every vertex is recolored a constant number of times.

The structure of this special coloring of the buffer, which is the main novelty of this paper, is described in Sections 2.2 to 2.4. We actually show that this graph recoloring problem can be rephrased into a “vectorial recoloring problem” (Section 2.5) which is easier to manipulate. And we finally prove that this vectorial recoloring problem can be solved by recoloring every element (and then every vertex of the graph) at most a constant number of times in Section 3.

2 Buffer and vectorial coloring

Throughout this section, \(G = (V, E) \) is a chordal graph on \(n \) vertices of maximum clique number \(\omega \) and maximum degree \(\Delta \). Let \(k \geq \omega + 3 \) be the number of colors denoted by \(1, \ldots, k \).

Given two integers \(x \leq y \), \([x, y]\) is the set \(\{x, x + 1, \ldots, y\} \). The closed neighbourhood of a set \(S \subseteq V \) is \(N[S] := S \cup (\bigcup_{v \in S} N(v)) \).

2.1 Chordal graphs and clique trees

Vertex ordering and canonical coloring

Let \(v_1, v_2, \ldots, v_n \) be a perfect elimination ordering of \(V \). A greedy coloring of \(v_n, v_{n-1}, \ldots, v_1 \) gives an optimal coloring \(c_0 \) of \(G \) using only \(\omega \) colors. The coloring \(c_0 \) is called the canonical coloring of \(G \). The colors \(c \in 1, 2, \ldots, \omega \) are called the canonical colors and the colors \(c > \omega \) are called the non-canonical colors. Note that the independent sets \(X_i := \{v \in V \text{ such that } c_0(v) = i\} \) for \(i \leq \omega \), called the classes of \(G \), partition the vertex set \(V \).

Clique tree

Let \(G = (V, E) \) be a chordal graph. A clique tree of \(G \) is a pair \((T, B) \) where \(T = (W, E') \) is a tree and \(B \) is a function that associates to each node \(U \) of \(T \) a subset of vertices \(B_U \) of \(V \) (called bag) such that: (i) every bag induces a clique, (ii) for every \(x \in V \), the subset of nodes whose bags contain \(x \) forms a non-empty subtree in \(T \), and (iii) for every edge \((U, W) \in T \), \(B_U \setminus B_W \) and \(B_W \setminus B_U \) are non empty. Note that the size of every bag is at most \(\omega(G) \). A clique-tree of \(G \) can be found in linear time [19]. Throughout this section, \(T = (V_T, E_T) \) is a clique tree of \(G \). We assume that \(T \) is rooted on an arbitrary node. Given a rooted tree \(T \) and a node \(C \) of \(T \), the height of \(C \) denoted by \(h(C) \) is the length of the path from the root to \(C \).
Let G be a chordal graph of maximum degree Δ and T be a clique tree of G rooted in an arbitrary node. Let x be a vertex of G and C_i, C_j be two bags of T that contain x. Then $h(C_i) - h(C_j) \leq \Delta$.

Proof. We can assume without loss of generality (free to replace the one with the smallest height by the first common ancestor of C_i and C_j) that C_i is an ancestor of C_j (indeed, this operation can only increase the difference of height). Let P be the path of T between C_i and C_j and (U, W) be an edge of P with $h(U) < h(W)$. By assumption on the clique tree, there is a vertex y that appears in B_W and that does not appear in B_U. Since this property is true for every edge of T and since all the bags of P induce cliques and contain x, the vertex x has at least $|P|$ neighbors.

2.2 Buffer, blocks and regions

Let C_e be a clique of T. We denote by T_{C_e} the subtree of T rooted in C_e and by $h_{C_e}(C)$ the height of the clique $C \in T_{C_e}$. Given a vertex $v \in T_{C_e}$, we say that v starts at height h if the maximum height of a clique of T_{C_e} containing v is h (in T_{C_e}).

Let $s := 3\binom{\omega}{2} + 2$ and $N = s + k - \omega + 1$ where k is the number of colors. The **buffer** B rooted in C_e is the set of vertices of G that start at height at most $3\Delta N - 1$ in T_{C_e}. For every $0 \leq i \leq 3N - 1$, the **block** Q_{3i+1} of B is the set of vertices of G that start at height h with $i\Delta \leq h \leq (i + 1)\Delta - 1$. Finally, for $0 \leq i \leq N - 1$, the **region** R_i of B is the set of blocks $Q_{3i+1}, Q_{3i+2}, Q_{3i+3}$. Unless stated otherwise, we will always denote the three blocks of R_i by A_i, B_i, C_i, and the regions of a buffer B by R_1, \ldots, R_N. Given a color class X_p and $S \subseteq V$, we denote by $N[S, p]$ the set $N[S \cap X_p]$. By definition of a block and Observation 6 we have:

Observation 7. Let C_e be a clique of T and B be the buffer rooted in T_{C_e}. Let Q_{i-1}, Q_i, Q_{i+1} be three consecutive blocks of B. Then $N[Q_i] \subseteq Q_{i-1} \cup Q_i \cup Q_{i+1}$. In particular for each region $R_i = (A_i, B_i, C_i)$ of B, $N[B_i] \subseteq R_i$.

Proof. Let v be a vertex of Q_i. By definition of Q_i, v starts at height h with $(3N - i)\Delta \leq h \leq (3N - i + 1)\Delta - 1$. Let u be a neighbour of v. By Observation 6, u starts at height h' with $h - \Delta \leq h' \leq h + \Delta$, thus we have $(3N - i - 1)\Delta \leq h' \leq (3N - i + 2)\Delta - 1$. It follows that u belongs either to Q_{i-1}, Q_i, or Q_{i+1}.

We refer to this property as the separation property. It implies that when recoloring a vertex of Q_i, one only has to show that the coloring induced on Q_{i-1}, Q_i, Q_{i+1} remains proper.

2.3 Vectorial coloring

Let B be a buffer. We denote the set of vertices of class p that belong to the sequence of blocks Q_1, \ldots, Q_q of B by (Q_1, \ldots, Q_q, p). A **color vector** ν is a vector of size ω such that $\nu(p) \in [1, k]$ for every $p \in [1, \omega]$, and $\nu(p) \neq \nu(q)$ for every $p \neq q \leq \omega$. A block Q
is well-colored for a color vector ν_Q if all the vertices of (Q,p) are colored with $\nu_Q(p)$. It does not imply that all the colors are $\leq \omega$ but just that all the vertices of a same class have the same color (and vertices of different classes have different colors). For brevity, we say that (Q,ν_Q) is well-colored and when ν_Q is clear from context we just say that Q is well-colored. In particular, a well-colored block is properly colored. Since the set (Q,p) may be empty, a block may be well-colored for different vectors. However, a color vector defines a unique coloring of the vertices of a block (if (Q,ν_Q) is well-colored then every vertex of (Q,p) has to be colored with $\nu_Q(p)$). The color vector ν is canonical if $\nu(p) = p$ for every $p \leq \omega$. A sequence of blocks Q_1, \ldots, Q_r is well-colored for (ν_1, \ldots, ν_r) if (Q_i, ν_i) is well-colored for every $i \leq r$.

- **Definition 8** (Waiting region). A region R well-colored for vectors ν_A, ν_B, ν_C is a waiting region if $\nu_A = \nu_B = \nu_C$.

- **Definition 9** (Color region). A region R well-colored for vectors ν_A, ν_B, ν_C is a color region if there exist a canonical color c_1, a non-canonical color z and a class p such that:
 1. $\nu_A(m) = \nu_B(m) = \nu_C(m) \neq \{c_1, z\}$ for every $m \neq p$.
 2. $\nu_A(p) = c_1$ and $\nu_B(p) = \nu_C(p) = z$.

In other words, the color of exactly one class is modified from a canonical color to a non-canonical color between blocks A and C. We say that the color c_1 disappears in R and that the color z appears in R. For brevity we say that R is a color region for the class X_p and colors c_1, z.

- **Definition 10** (Transposition region). A region R well-colored for vectors ν_A, ν_B, ν_C is a transposition region if there exist two canonical colors $c_1 \neq c_2$, two non-canonical colors $z \neq z'$ and two distinct classes p,q such that:
 1. $\nu_A(m) = \nu_B(m) = \nu_C(m) \neq \{c_1, c_2, z, z'\}$ and is canonical for every $m \notin \{p,q\}$.
 2. $\nu_A(p) = c_1$, $\nu_B(p) = z$, $\nu_C(p) = c_2$.
 3. $\nu_A(q) = c_2$, $\nu_B(q) = z'$, $\nu_C(q) = c_1$.

Note that ν_A and ν_C only differ on the coordinates p and q which have been permuted. The colors z and z' are called the temporary colors of R. Note that the coloring induced on R is proper since the separation property ensures that $N[A \cap R] \subseteq A \cup B$, $N[C \cap R] \subseteq B \cap C$ and no class in B is colored with c_1 nor c_2.

Let ν be a color vector. The color vector ν' is obtained from ν by swapping the coordinates $p, \ell \leq \omega$ if for every $m \notin \{p, \ell\}$, $\nu'(m) = \nu(m)$, $\nu'(p) = \nu(\ell)$, and $\nu'(\ell) = \nu(p)$. In other words, ν' is the vector obtained from ν by permuting the coordinates p and ℓ.

![Figure 2](image_url) The buffer B rooted at C_e. The dots represent cliques of T and the dashed lines separates the blocks of B.

24:6 Linear Transformations Between Colorings in Chordal Graphs
Figure 3 Example of waiting, color, and transposition regions with ω = 4. Each square represents a region, the dotted lines separate the blocks and the dashed lines separate the classes. The colors 1 to 4 are the canonical colors and the colors 5 and 6 are non-canonical colors. The underlined colors in the transposition region indicate the temporary colors.

Swapping the coordinates p and ℓ in a region R well-colored for (νA, νB, νC) means that for every block Q ∈ {A, B, C}, we replace νQ by the color vector ν′ Q obtained by swapping the coordinates p and ℓ of νQ. It does not refer to a reconfiguration operation but just to an operation on the vectors.

Observation 11. Swapping two coordinates in a waiting (resp. color, resp. transposition) region leaves a waiting (resp. color, resp transposition) region.

Using the following lemma, we can assume that all the transposition regions use the same temporary colors.

Lemma 12. Let R be a transposition region with temporary colors z, z′. Let z″ ∉ {z, z′} be a non-canonical color. By recoloring the vertices of R at most once, we can assume the temporary colors are z, z″.

Proof. Let p and q be the coordinates which are permuted in R. By definition of transposition regions, no vertex of R is colored with z″. As any class is an independent set and by the separation property, we can recolor (B, q) with z″ to obtain the desired coloring of R. ▶

2.4 Valid and almost valid buffers

In what follows, a bold symbol ν always denote a tuple of vectors and a normal symbol ν always denotes a vector. Let \(\mathcal{B} = R_1, R_2, \ldots, R_N \) be a buffer such that all the regions \(R_i = A_i, B_i, C_i \) are well-colored for the vectors νA, νB, νC. So \(\mathcal{B} \) is well-colored for ν = (νA1, νB1, νC1, νA2, ..., νCN). The buffer \(\mathcal{B}, \nu \) is valid if:

1. [Continuity property] For every \(i \in 1, 2, \ldots, N - 1 \), \(ν_{C_i} = ν_{A_{i+1}} \).
2. The vectors νA1, νB1, and νC1 are canonical (and then \(R_1 \) is a waiting region).
3. The regions \(R_2, \ldots, R_{n-1} \) define a transposition buffer, that is a sequence of consecutive regions that are either waiting regions or transposition regions using the same temporary colors.
4. The regions \(R_{n+1}, \ldots, R_{N-1} \) define a color buffer, that is a sequence of consecutive regions that are either color regions or waiting regions.
5. The regions \(R_1 \) and \(R_N \) are waiting regions.

Note that Property 1 along with the definition of well-colored regions enforce “continuity” in the coloring of the buffer: the coloring of the last block of \(R_t \) and the first block of \(R_{t+1} \) in a valid buffer have to be the same.

An almost valid buffer \((\mathcal{B}, \nu) \) is a buffer that satisfies Properties 1 to 4 of a valid buffer and for which Property 5 is relaxed as follows:
The region \(R_i \) is a transposition region or a waiting region. \(R_N \) is a waiting region.

Let us make a few observations.

- **Observation 13.** Let \((\mathcal{B}, \nu)\) be an almost valid buffer. For every \(i \leq s \), the color vectors \(\nu_{A_i} \) and \(\nu_{C_i} \) are permutations of the canonical colors.

Proof. By induction on \(i \). By Property 2 of almost valid buffers, it is true for every \(i \leq r \). Suppose now that the property is verified for \(R_i \) with \(2 < i < s \). By assumption \(\nu_{C_i} \) is a permutation of \([1, \omega]\) and the continuity property (Property 1 of almost valid buffer) ensures that \(\nu_{A_{i+1}} = \nu_{C_i} \). By Property 3 we only have two cases to consider, either \(R_{i+1} \) is a waiting region and by definition \(\nu_{i+1} = \nu_{A_{i+1}} \), or \(R_{i+1} \) is a transposition region. In the latter case, by definition of a transposition region, \(\nu_{C_{i+1}} \) is equal to \(\nu_{A_{i+1}} \) up to a transposition of some classes \(k, \ell \) and thus is a permutation of the canonical colors.

- **Observation 14.** Let \((\mathcal{B}, \nu)\) be an almost valid buffer and \(c \) be a non-canonical color. There exists a unique class \(p \leq \omega \) such that \(\nu_{C_i}(p) = c \). Furthermore, either the class \(p \) is colored with \(c \) on all the blocks of \(R_{s+1}, \ldots, R_N \), or the color \(c \) disappears in a color region for the class \(p \).

Proof. By Observation 13, \(\nu_{C_i} \) is a permutation of the canonical colors. Thus there exists a unique class \(p \leq \omega \) such that \(\nu_{C_i}(p) = c \). Furthermore, by Property 4 of almost valid buffer, the regions \(R_{s+1}, \ldots, R_N \) are either waiting or color regions. The continuity property then ensures that either the class \(p \) is colored with \(c \) on \(R_{s+1}, \ldots, R_N \) or that the color \(c \) disappears in a color region if there exists a color region for the class \(p \).

Since only non-canonical colors can appear in a color region, we have the following observation:

- **Observation 15.** Let \((\mathcal{B}, \nu)\) be an almost valid buffer and \(z \) be a non-canonical color. Either no vertex of \(R_{s+1}, \ldots, R_N \) is colored with \(z \), or there exists a color region \(R_i \) with \(s < i < N \) for the class \(p \) in which \(z \) appears. In the latter case, the vertices of the color buffer of \(\mathcal{B} \) colored with \(z \) are exactly the vertices of \((\mathcal{B}_i, C_i, \ldots, C_N, p)\).

Finally, since the number of regions in the color buffer is the number of non-canonical colors, we have:

- **Observation 16.** Let \((\mathcal{B}, \nu)\) be an almost valid buffer. There exists a waiting region in \(R_{s+1}, \ldots, R_{N-1} \) if and only if there exists a non-canonical color that does not appear in \(R_{s+1}, \ldots, R_{N-1} \).

2.5 Vectorial recoloring

Let \((\mathcal{B}, \nu)\) be a buffer. The tuple of color vectors \(\nu = (\nu_{Q_1}, \ldots, \nu_{Q_{3\Delta N}}) \) is a (proper) vectorial coloring of \(\mathcal{B} \) if for every color \(c \) and every \(i \leq 3\Delta N - 1 \) such that \(c \) is in both \(\nu_{Q_i} \) and \(\nu_{Q_{i+1}} \), then there exists a unique class \(p \leq \omega \) such that \(\nu_{Q_i}(p) = \nu_{Q_{i+1}}(p) = c \).

- **Observation 17.** Any proper vectorial coloring \((\mathcal{B}, \nu)\) induces a proper coloring of \(G[\mathcal{B}] \).

Proof. Indeed, two different classes in two consecutive blocks cannot have the same color in a proper vectorial coloring. Since for any block \(Q_i \) of \(\mathcal{B} \) and for any class \(p \), \(N[Q_i, p] \subseteq Q_{i-1} \cup Q_i \cup Q_{i+1} \), the coloring induced on \(G[\mathcal{B}] \) is proper.
exists a sequence of (proper) single vertex recolorings of \(B \) rooted at \(\nu \) are recolored. Then there exists a recoloring sequence of \(\nu \) such that \(\nu'(p) = c \neq \nu(p) \). Then recoloring the vertices of \((Q,p)\) one by one is a proper sequence of recolorings of \(G[Q] \) after which \(Q \) is well-colored for \(\nu' \).

Observation 18. Let \(Q \) be a block well-colored for \(\nu \) and let \(\nu' \) be a color vector adjacent to \(\nu \) such that \(\nu'(p) = c \neq \nu(p) \). Then recoloring the vertices of \((Q,p)\) one by one is a proper sequence of recolorings of \(G[Q] \) after which \(Q \) is well-colored for \(\nu' \).

Let \((\nu, \nu')\) be two vectorial colorings of a buffer \(B \). The coloring \(\nu' \) is a vectorial recoloring of \(\nu \) if there exists a unique \(i \in [1,3\Delta N] \) such that \(\nu'(p,\nu) \) is adjacent to \(\nu(p) \), and \(\nu'(p,\nu) = \nu(p) \), for \(j \neq i \). By Observation 18, we have:

Observation 19. Let \(t \geq 1 \) and \((\nu^1, \nu')\) be two (proper) vectorial colorings of a buffer \(B \). If there exists a sequence of adjacent (proper) vectorial recolorings \(\nu^1, \nu^2, \ldots, \nu' \), then there exists a sequence of (proper) single vertex recolorings of \(G[B] \) after which the coloring of \(B \) is well-colored for \(\nu' \).

Given a sequence of vectorial recolorings \(\nu^1, \nu^2, \ldots, \nu' \), we say that each coordinate is recolored at most \(\ell \) times if for every coordinate \(p \leq \omega \) and every \(r \in [1,3\Delta N] \), there exist at most \(\ell \) indices \(t_1, \ldots, t_\ell \) such that the unique difference between \(\nu^{t_i} \) and \(\nu^{t_{i+1}} \) is the \(p \)-th coordinate of the \(r \)-th vector of the tuples.

3 Algorithm outline

Let \(G \) be a chordal graph of maximum degree \(\Delta \) and maximum clique size \(\omega \), \(T \) be a clique tree of \(G \), and \(\phi \) be any \(k \)-coloring of \(G \). We propose an iterative algorithm that recolors the vertices of the bags of \(T \) from the leaves to the root until we obtain the canonical coloring defined in Section 2.1. Let \(S \) be a clique of \(T \). A coloring \(\alpha \) of \(G \) is treated up to \(S \) if:
1. Vertices starting at height more than \(3\Delta N \) in \(T_S \) are colored canonically, and
2. The buffer rooted at \(S \) is valid.

Let \(C \) be a clique of \(T \). We associate a vector \(\nu_C \) of length \(\omega \) to the clique \(C \) as follows. We set \(\nu_C(t) = \alpha(\nu) \) if there exists \(\nu \in X_t \cap C \). Then we arbitrarily complete \(\nu_C \) in such a way that all the coordinates of \(\nu_C \) are distinct (which is possible since \(|\nu_C| < k \)).

Given two vectors \(\nu \) and \(\nu' \) the difference \(D(\nu,\nu') \) between \(\nu \) and \(\nu' \) is \(|\{p : \nu(p) \neq \nu'(p)\}| \), i.e. the number of coordinates on which \(\nu \) and \(\nu' \) differ. Given an almost valid buffer \((B,\nu)\) and a vector \(\nu_C \), the border error \(D_B(\nu_C,\nu) \) is \(D(\nu_C,\nu) \).

Let \(B \) be a buffer. The class \(p \leq \omega \) is internal to \(B \) if \(N[R_N,p] \not\subseteq R_{N-1} \cup R_N \).

We first state the main technical lemmas of the paper with their proof outlines and finally explain how we can use them to derive Theorem 2. The complete proofs of the lemmas annotated with (*) are included in the full version of the article (see related version).

Lemma 20 (\(\ast\)). Let \(C \) be a clique associated with \(\nu_C \). Let \(S \) be a child of \(C \), \(B \) be the buffer rooted at \(S \) and \(\nu \) be a tuple of vectors such that \((B,\nu)\) is valid. If \(D_B(\nu_C,\nu) > 0 \), then there exists a recoloring sequence of \(\bigcup_{i=1}^N R_i \) such that the resulting coloring \(\nu' \) satisfies \(D_B(\nu_C,\nu') < D_B(\nu_C,\nu) \), and \((B,\nu')\) is almost valid. Moreover, every coordinate of \(\bigcup_{i=1}^N R_i \) is recolored at most 3 times and only internal classes are recolored.
Outline of the proof. Let ℓ be a class on which ν_C and ν_{C_N} are distinct. Then, in particular, no vertex of X_ℓ is in $C_N \cap C$ thus the class ℓ is internal. Given an internal class ℓ, if we modify $\nu_{C_N}(\ell)$ and maintain a proper vectorial coloring of the buffer B, then the corresponding recoloring of the graph is proper. So, if we only recolor internal classes of R_N, then we simply have to check that the vectorial coloring of B remains proper. The proof is then based on a case study depending on whether $\nu_C(\ell)$ is canonical or not. A more complete sketch is given in Section 3.1

Lemma 21 (*). Let (B, ν) be an almost valid buffer. There exists a recoloring sequence of $\bigcup_{i=2}^e R_i$ such that every coordinate is recolored at most 6 times and the resulting coloring ν' is such that (B, ν') is valid.

Outline of the proof. The proof distinguishes two cases: either there exists a waiting region in the transposition buffer or not. In the first case, we show that we can “slide” the waiting regions to the right of the transposition buffer and then ensure that R_s is a waiting region. Otherwise, because of the size of the transposition buffer, then some pair of colors has to be permuted twice. In this case, we show that these two transpositions can be replaced by waiting regions (and we can apply the first case). A more complete sketch is given in Section 4.

Note that given a clique C and its associated vector ν_C, applying Lemma 21 to an almost valid buffer (B, ν) rooted at a child S of C does not modify $D_B(\nu_C, \nu)$ since the region R_N is not recolored.

Let C be a clique and S_1, S_2 be two children of C. For every $i \leq 2$, let B_i be the buffer of S_i and assume that B_i is valid for ν. We say that B_1 and B_2 have the same coloring if $\nu^1 = \nu^2$.

Lemma 22 (*). Let C be a clique associated with ν_C. Let S_1, S_2, \ldots, S_e be the children of C, and for every $i \leq e$, B_i be the buffer rooted at S_i. Let ν' be a vectorial coloring such that (B_i, ν') is valid. If $D_{B_i}(\nu_C, \nu') = 0$ for every $i \leq e$, then there exists a recoloring sequence of $\bigcup_{j=3}^{N-1} R_j$ such that every coordinate is recolored $O(\omega^2)$ times, the final coloring of all the B_i's is the same coloring ν', $D_B(\nu, \nu') = 0$, and (B_i, ν') is valid for every $i \leq e$.

Outline of the proof. First, we prove that it is possible to transform the coloring of B_i in such a way that all the color buffers have the same coloring, and that $\nu^1 = \nu^2$ for $i \in [2, e]$. Then we have to ensure that the vectors of the transposition buffers are the same, which is more complicated. Indeed, even if we know that the vectors ν^1_i and ν^2_i are the same, we are not sure that we use the same sequence of transpositions in the transposition buffers of B_1 and B_i to obtain it. Let τ_1, \ldots, τ_r be the set of transpositions of B_1. The proof consists in showing that we can add to B_i the transpositions $\tau_1, \ldots, \tau_r, \tau_r^{-1}, \ldots, \tau_1^{-1}$ at the beginning of the transposition buffer. It does not modify ν_{A_k} since this sequence of transpositions gives the identity. Finally, we prove that $\tau_r^{-1}, \ldots, \tau_1^{-1}$ can be cancelled with the already existing transpositions of B_1. And then the transposition buffer of B_i only consists of τ_1, \ldots, τ_r.

Lemma 23 (*). Let C be a clique of T with children S_1, S_2, \ldots, S_e and let α be a k-coloring of G treated up to S_i for every $i \in [1, e]$. Let ν_C be a vector associated with C and $B_i = R_1, \ldots, R_N$ denote the buffer rooted at S_i. Assume that there exists ν such that (B_i, ν) is valid and satisfies $D_B(\nu_C, \nu) = 0$ for every $i \leq e$. Then there exists a recoloring sequence of $\bigcup_{j=2}^{N-1} R_j$ such that, for every $i \leq e$, every vertex of B_i is recolored at most one time and such that the resulting coloring of G is treated up to C.

\textbf{Lemma 21} (*). Let (B, ν) be an almost valid buffer. There exists a recoloring sequence of $\bigcup_{i=2}^e R_i$ such that every coordinate is recolored at most 6 times and the resulting coloring ν' is such that (B, ν') is valid.
Outline of the proof. This proof “only” consists in shifting the buffer of one level. We simply recolor the vertices that now start in another region (of the buffer rooted at C) with their new color. We prove that the recoloring algorithm cannot create any conflict.

Given Lemmas 20, 21, 22 and 23 we can prove our main result:

Theorem 24. Let Δ be a fixed constant. Let $G(V,E)$ be a d-degenerate chordal graph of maximum degree Δ and ϕ be any k-coloring of G with $k \geq d + 4$. Then we can recolor ϕ into the canonical coloring c_0 in at most $O(d^4 \Delta \cdot n)$ steps. Moreover the recoloring algorithm runs in linear time.

Proof. Let c_0 be the canonical coloring of G as defined in Section 2.1, and T be a clique tree of G. Let us first show that given a clique $C \in T$ with children S_1, \ldots, S_r and a coloring α treated up to S_i for every $i \leq e$, we can obtain a coloring of G treated up to C. Let ν_i be a vector associated with C. For every $i \leq e$, let B_i be the buffer rooted in S_i and ν_i be a vectorial coloring of B_i such that (B_i, ν_i) is valid. For every $i \leq e$, by applying Lemmas 20 and 21 at most $DB_i(\nu_i, \nu')$ times to (B_i, ν'), we obtain a vectorial coloring ν' such that (B_i, ν') is valid and $DB_i(\nu_i, \nu') = 0$. By Lemma 22, we can recolor each ν' into ν'' such that for every i, (B_i, ν'') is valid and $DB_i(\nu_i, \nu'') = 0$. Then we can apply Lemma 23 to obtain a coloring of G such that the buffer (B, ν) rooted in C is valid. Since no vertex starting in cliques $W \in T_C$ with $h_C(W) > 3\Delta N$ is recolored, these vertices remain canonically colored and the resulting coloring of G is treated up to C. Note that only vertices of T_C that start in cliques of height at most $3\Delta N$ are recolored at most $O(\omega^2)$ times to obtain a coloring treated up to C.

Let us now describe the recoloring algorithm and analyze its running time. We root T at an arbitrary node C_r and orient the tree from the root to the leaves. We then do a breadth-first-search starting at C_r and store the height of each node in a table h such that $h[i]$ contains all the nodes of T of height i. Let i_h be the height of T. We apply Lemmas 20 to 23 to every $C \in h[i]$ for i from i_h to 0. Let us show that after step i, the coloring of G is treated up to C for every $C \in h[i]$. It is true for $i = i_h$ since for any $C \in h[i_h]$ the sub-tree T_C of T only contains C. Suppose it is true for some $i > 0$ and let $C \in h[i - 1]$. Let S_1, \ldots, S_r be the children of C. For all $j \in 1, \ldots, e$, $S_j \in h[i]$ and by assumption the current coloring is treated up to S_j after step i. Thus we can apply Lemmas 20 to 23 to C. After iteration i_h, we obtain a coloring of G that is treated up to C_r. Up to adding “artificial” vertices to G, we can assume that C_r is the only clique of T adjacent to a clique path of length $3\Delta N$ (in fact we only need a tuple of $3N$ color vectors) in T and apply Lemmas 20 to 23 until we obtain a coloring such that C_r is canonically colored, and the algorithm terminates. A clique tree of G can be computed in linear time [19], as well as building the tree h via a breadth-first-search. Given a clique C, we can access to the cliques of the buffer rooted at T_C in constant time by computing their height and using the table h. Furthermore, a vertex of height i is recolored during the iterations $i + 1, \ldots, i + 3\Delta N$ only. As each vertex is recolored at most $O(\omega^2)$ times at each iteration, it follows that the algorithm runs in linear time. Finally, as $N = 3(\omega^2 + k - \omega + 3)$, each vertex is recolored at most $O(\omega^2 \Delta)$ times, and thus the algorithm recolors ϕ to c_0 in at most $O(\omega^2 \Delta \cdot n)$ steps.

The proof of Theorem 2 immediately follows:

Proof of Theorem 2. Let ϕ and ψ be two k-colorings of G with $k \geq d + 4$ and let c_0 be the canonical coloring of G defined in Section 2.1. By Theorem 24, there exists a recoloring sequence from ϕ (resp. ψ) to c_0 of length $O((d + 1)^4 \Delta \cdot n)$. Thus there exists a sequence of length $O_\Delta(n)$ that recolors ϕ to ψ. Furthermore the recoloring sequences from ϕ to c_0 and from ψ to c_0 can be found in linear time by Theorem 24, which concludes the proof.
3.1 Proof of Lemma 20

Recall that in a buffer B, R_i is the region that sits between the transposition buffer and the color buffer. Before proving Lemma 20, let us first start with some observations.

Observation 25. Let R be a well-colored region that does not contain color c. If we set $\nu_Q(p) = c$ for every block Q of R, then we obtain a waiting region if R was a waiting region or a color region for the class p, and we obtain a color region if R was a color region for a class $q \neq p$.

Lemma 26 (*). Let (B, ν) be an almost valid buffer and R_i, R_j be two regions of B with $1 \leq i \leq j$. Let X be a block in $\{B_i, C_i\}$ and let $Y = B_j$ or $Y = C_N$. Then recoloring (X, \ldots, Y, p) with c preserves the continuity property.

Given a color c, a class p, and a sequence of consecutive blocks (Q_1, \ldots, Q_j), we say that (Q_i, \ldots, Q_j, p) is c-free if no vertex of $N[\cup_{i=1}^j Q_i \cap X_p]$ is colored with c. Note that a sequence of (proper) vectorial recolorings of a buffer (B, ν) that does not recolor A_1 and such that all the classes recolored on C_N are internal to B yields a (proper) sequence of single vertex recolorings of G by Observation 19. With the definition of clique-tree we can make the following observation:

Observation 27. Let C be a clique associated with ν_C, S be a child of C, and (B, ν) be the buffer rooted at S. If $\nu_{C_n}(\ell) \neq \nu_{C}(\ell)$ for some $\ell \leq \omega$, then the class ℓ is internal to B.

Proof. Suppose that the class $\ell \leq \omega$ is not internal to B. Then there exists a vertex $u \in X_\ell \cap R_N$ which has a neighbor v that does not belong to $R_{N-1} \cup R_N$. Thus u and v must be contained in C or in a clique C' that is an ancestor of C. In the latter case, Property (ii) of clique tree ensures that u must also be contained in C. Then, by definition of ν_C, it must be that $\nu_C(\ell) = \nu_{C_n}(\ell)$.

We also need the following technical lemma:

Lemma 28. Let (B, ν) be an almost valid buffer. Let $s < i < N$, c be a color and p be an internal class. If one of the following holds:
1. R_i is a waiting region, c is a non-canonical color that does not appear in R_s, \ldots, R_N and the class p is not involved in a color region, or
2. R_i is a color region for the class p. Moreover c is non-canonical and does not appear in R_s, \ldots, R_N, or
3. R_i is a color region for the class p where c is the canonical color that disappears.

Then changing the color of (B_i, \ldots, C_N, p) by c also gives an almost valid buffer and a proper coloring of G.

We can now give the flavour of Lemma 20. For a complete proof, the reader is referred to the full version of the article.

Proof of Lemma 20. Let C be the clique associated with vector ν_C and S be a child of C. Let (B, ν) be the valid buffer rooted at S. Assume that $D_B(\nu_C, \nu) > 0$. Then there exists $p \leq \omega$ such that $\nu_{C_n}(p) \neq \nu_C(p) := c$ and by Observation 27 the class p is internal to B.

The following sequences of recolorings only recolor blocks of R_s, \ldots, R_N and all the recolorings fit in the framework of Lemma 26. Thus Properties 1, 2 and 3 of almost valid buffers are always satisfied. We then only have to check Properties 4 and 5' to conclude the proof. The proof is then based on a case distinction. Let us give a couple of simple cases to give an idea of the general proof:
Case 1. No class is colored with c on R_s, \ldots, R_N in ν.

Then c is not canonical since ν_{A_j} is a permutation of the canonical colors by Observation 13. Suppose first that there does not exist a color region for the class p in ν. Since c does not appear in the color buffer, Observation 16 ensures that there exists a waiting region R_s with $s < i < N$. Then by Lemma 28.1, we can recolor (B_i, \ldots, C_N, p) with c and obtain an almost valid buffer. Suppose otherwise that there exists a color region R_j for class p in ν. By Lemma 28.2, we can recolor (B_j, \ldots, C_N, p) with c and obtain an almost valid buffer. In both cases, the border error decreases.

Case 2. A class $\ell \neq p$ is colored with c, c is canonical, and c disappears in the color region R_j for class ℓ where the non-canonical color z appears (see Figure 4 for an illustration). Let $z' \neq z$ be a non-canonical color and let $c_1 = \nu_{A_j}(p)$. We apply the following recolorings:

1. Recolor (B_s, \ldots, A_j, ℓ) with z,
2. Recolor (B_s, p) with z',
3. Recolor (C_s, \ldots, C_N, p) with c,
4. Recolor (C_s, \ldots, A_j, ℓ) with c_1.

Recoloring 1 is proper since Observation 15 ensures that the only class colored with z in R_s, \ldots, R_N is the class ℓ on (B_j, \ldots, C_N). By the separation property, (B_s, \ldots, A_j, ℓ) is z-free in ν. Recoloring 2 is proper as the only non-canonical color in R_s after recoloring 1 is $z \neq z'$. Recoloring 3 is proper as the class p is internal and thus after recoloring 1, (C_s, \ldots, C_N, p) is c-free by the separation property. Finally, recoloring 4 is proper as after recolorings 2 and 3, (C_s, \ldots, A_j, ℓ) is c_1-free by the separation property.

Let us show that the resulting coloring defines an almost valid buffer. First note that regions R_{j+1}, \ldots, R_N are only modified by recoloring 3 and Observation 25 ensures they remain either waiting or color regions. In particular R_N remains a waiting region. Note that after recolorings 3 and 4, ν' on regions R_{s+1}, \ldots, R_{j-1} is obtained from ν by swapping coordinates p and ℓ (on these regions). Thus the nature of these regions is maintained by Observation 11. Since R_j was a color region for the class ℓ and colors c, z in ν, B_j, C_j are not modified and since $\nu'_{A_j}(\ell) = c_1$, R_j is a color region for class ℓ and colors c_1, z in ν'. So the regions R_{s+1}, \ldots, R_N remain either waiting or color regions. Furthermore no new color region is created and colors c_1, z are involved in exactly one color region thus Property 4 is satisfied. Finally, R_s is indeed a transposition region in ν' since ν is a valid buffer and z and z' are non-canonical colors, thus Property 5' holds. Furthermore, $\nu'_{C_N}(p) = c$ thus the border error has decreased.

Figure 4 The initial coloring ν for case 2 in the proof of Lemma 20. The rows represent the classes. A blank indicates a color region for the class. The vertical segment at the end of the buffer indicates that the class is internal. The dotted vertical lines separate the different regions.
Proof of Lemma 21

The proof distinguishes two cases:

Case 1. there is a region of the transposition buffer of B that is a waiting region.

The core of the proof consists in iteratively applying the following lemma:

- **Lemma 29 (•).** Let (B, ν) be an almost valid buffer and R_i, R_{i+1} be two consecutive regions with $1 < i < s$ such that R_i is a waiting region and R_{i+1} is a transposition region.

Then there exists a recoloring sequence of $R_i \cup R_{i+1}$ such that, in the resulting coloring ν', R_i is a transposition region, R_{i+1} is a waiting region, and (B, ν') is almost valid. Moreover only coordinates of $R_i \cup R_{i+1}$ are recolored at most twice.

Case 2. All the regions of the transposition buffer of B are transposition regions.

As there are $3 \binom{\omega}{2}$ regions in the transposition buffer and only $\binom{\omega}{2}$ distinct transpositions of $[1, \omega]$, there must exist two distinct regions R_i and R_j with $1 < i < j < s$ for which the same pair of colors is permuted (note that the colors might be associated to different classes in R_i and R_j but it does not matter). The proof consists in applying the following lemma and then applying Case 1.

- **Lemma 30 (•).** Let (B, ν) be an almost valid buffer and c_1, c_2 be two canonical colors. If there exist two transposition regions R_i and R_j where colors c_1 and c_2 are transposed, then there exists a sequence of recolorings of $\cup_{t=i}^j R_t$ such that each coordinate is recolored at most twice, R_i and R_j are waiting regions in the resulting coloring ν', and (B, ν') is almost valid.

References

