The Complexity of Symmetry Breaking in Massive Graphs

Christian Konrad
Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
christian.konrad@bristol.ac.uk

Sriram V. Pemmaraju
Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA
sriram-pemmaraju@uiowa.edu

Talal Riaz
Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA
sriram-pemmaraju@uiowa.edu

Peter Robinson
Department of Computer Science, City University of Hong Kong
peter.robinson@cityu.edu.hk

Abstract
The goal of this paper is to understand the complexity of symmetry breaking problems, specifically maximal independent set (MIS) and the closely related \(\beta \)-ruling set problem, in two computational models suited for large-scale graph processing, namely the \(k \)-machine model and the graph streaming model. We present a number of results. For MIS in the \(k \)-machine model, we improve the \(\tilde{O}(m/k^2 + \Delta/k) \)-round upper bound of Klauck et al. (SODA 2015) by presenting an \(\tilde{O}(m/k^2) \)-round algorithm. We also present an \(\tilde{\Omega}(n/k^2) \) round lower bound for MIS, the first lower bound for a symmetry breaking problem in the \(k \)-machine model. For \(\beta \)-ruling sets, we use hierarchical sampling to obtain more efficient algorithms in the \(k \)-machine model and also in the graph streaming model. More specifically, we obtain a \(k \)-machine algorithm that runs in \(\tilde{O}(\beta n \Delta^{1/\beta} / k^2) \) rounds and, by using a similar hierarchical sampling technique, we obtain one-pass algorithms for both insertion-only and insertion-deletion streams that use \(O(\beta \cdot n^{1+1/2^\beta-1}) \) space. The latter result establishes a clear separation between MIS, which is known to require \(\Omega(n^2) \) space (Cormode et al., ICALP 2019), and \(\beta \)-ruling sets, even for \(\beta = 2 \). Finally, we present an even faster 2-ruling set algorithm in the \(k \)-machine model, one that runs in \(\tilde{O}(n/k^2 - \epsilon + k^{1-\epsilon}) \) rounds for any \(\epsilon, 0 \leq \epsilon \leq 1 \). For a wide range of values of \(k \) this round complexity simplifies to \(\tilde{O}(n/k^2) \) rounds, which we conjecture is optimal.

Our results use a variety of techniques. For our upper bounds, we prove and use simulation theorems for beeping algorithms, hierarchical sampling, and \(L_0 \)-sampling, whereas for our lower bounds we use information-theoretic arguments and reductions to 2-party communication complexity problems.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases communication complexity, information theory, \(k \)-machine model, maximal independent set, ruling set, streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.26

1 Introduction

The dramatic growth in the size of graphs that need to be algorithmically processed has led to exciting research in large-scale distributed and streaming graph algorithms. Specifically, there has been a flurry of research on graph algorithms and lower bounds in models of
large-scale distributed computation such as the MapReduce model [24], the massive parallel computation (MPC) model [39], and the k-machine model [26]. Simultaneously, a lot of progress has been made on designing low-memory graph algorithms and proving memory lower bounds in different data streaming models [31]. The goal of this paper is to understand the complexity of symmetry breaking problems, specifically maximal independent set (MIS) and the closely related ruling sets problem, in the k-machine and streaming models. The MIS problem is a fundamental building block in distributed and parallel computing and efficient distributed algorithms for MIS are the basis for efficient distributed algorithms for problems such as minimum dominating set and facility location. A β-ruling set of a graph $G = (V, E)$, for integer $\beta \geq 1$, is an independent set $I \subseteq V$ such that every node in V is at most β hops from some node in I. An MIS is just a 1-ruling set and β-ruling sets for larger β are natural relaxations of an MIS.

There is a rich interplay between techniques in distributed algorithms and those in streaming algorithms. On the algorithmic side, L_0-sampling [22] and the related linear graph sketches [3], which were first developed in the context of insertion-deletion streams have also been used for optimal algorithms for connectivity and MST in the distributed CongestedClique [23] and k-machine models [26, 35]. On the lower bound side, there are numerous examples of reductions to 2-party or multiparty communication complexity problems being used to derive lower bounds for both distributed computing and streaming problems. In this paper, hierarchical sampling is the common technical thread that connects our k-machine results and streaming results.

The k-machine model

The k-machine model was introduced by Klauck et al. [26] as an abstraction of the computation performed by large-scale graph processing systems such as Pregel [30] and Giraph (see http://giraph.apache.org/). This model assumes k machines m_1, m_2, \ldots, m_k connected by a clique communication network. Computation and communication proceed in fault-free, synchronous rounds via message passing, as in standard models of distributed computation such as Congest [37]. The typical assumption regarding bandwidth constraints in the k-machine model is that in each round, each communication link can carry a message of size $O(\text{poly}(\log n))$ bits. The input consists of a massive n-vertex graph, with $n \gg k$. The graph is assumed to be distributed randomly in a vertex-centric fashion, i.e., each vertex and all incident edges are assigned to a machine picked uniformly at random from among the k machines. Thus each machine hosts $\tilde{O}(n/k)$ vertices with high probability (whp). Furthermore, a machine m_i that hosts a vertex v also knows not just the neighbors of v, but also the machines that host these neighbors. This assumption about initial knowledge is sometimes referred to as the KT1 (“K)nowledge (T)ill Radius 1”) assumption [6].

In the paper by Klauck et al. [26] and in subsequent works [7, 20, 35, 36], upper and lower bounds for several important graph problems such as connectivity, minimum spanning tree (MST), page rank, triangle enumeration, etc., are shown. For example, an $\tilde{\Omega}(n/k^2)$ round lower bound on connectivity is shown in [26] and a tight (within logarithmic factors) upper bound of $\tilde{O}(n/k^2)$ is shown in [35]. While we have a good understanding of connectivity

1 The citation for the 2016 Dijkstra prize in Distributed Computing calls MIS the “crown jewel of distributed symmetry breaking problems.”

2 We use $O(f(n))$ and $\tilde{O}(f(n))$ notation to hide polylogarithmic factors. $O(f(n))$ is short for $O(f(n)\log^c n)$ for some constant c and $\tilde{O}(f(n))$ is short for $\Omega(f(n)/\log^c n)$ for some constant c. The phrase “with high probability” refers to probability at least $1 - 1/n$.

and related “global” problems in the \(k \)-machine model, this understanding does not extend
to MIS and symmetry breaking problems such as ruling sets. For example, [26] mention
an \(\tilde{O}(\min\{ \frac{n}{k}, \frac{m}{k^2} + \frac{\Delta}{k} \}) \)-round MIS algorithm in the \(k \)-machine model that is obtained from
a direct simulation of Luby’s MIS algorithm [29, 4]. On the other hand, no lower bounds
are known for MIS or any related symmetry breaking problems such as \(\beta \)-ruling sets in the
\(k \)-machine model. In this paper, we shed some light on the complexity of symmetry breaking
in the \(k \)-machine model; our specific results are described in more detail below.

Data Streaming Models

Data streaming algorithms are motivated by the fact that modern data sets are too large
to fit into a computer’s random access memory. A streaming algorithm processes its input
sequentially item by item in one or few passes while maintaining a random access memory of
sublinear size in the input [32]. Graph problems have been studied in the streaming model
for roughly 20 years [19] (see also [31] for a more recent survey). Given an \(n \)-node graph \(G \),
a streaming algorithm processing \(G \) makes one or few passes over the edges of \(G \). A priori
no assumption is made regarding the order in which the edges “arrive”. We will also consider
graph streams that consist of both edge insertions and deletions (also known as dynamic
or turnstile streams), where an edge can only be deleted if it has previously been inserted.
This model has first been investigated by Ahn et al. [3] and has since been the focus of
active research.

It is known that space \(\Omega(n^2) \) space is necessary for one pass streaming algorithms [12, 5]
that solve MIS, i.e., the trivial algorithm that stores all edges and computes a maximal
independent set in the post-processing stage is optimal. However, nothing is known about
ruling sets in the streaming model. Using a hierarchical sampling approach we show there
is a \(\beta \)-ruling set algorithm using \(o(n^2) \) space, showing a clear separation between the space
complexity of \(\beta \)-ruling sets for \(\beta = 1 \) and \(\beta = 2 \) in the one pass streaming setting.

1.1 Main Contributions

The contributions of this paper can be organized into three categories as follows.

MIS bounds. We present an \(\tilde{O}(\min\{ \frac{n}{k}, \frac{m}{k^2} \}) \)-round MIS algorithm in the \(k \)-machine model
for graphs with \(m \) edges, improving on the \(\tilde{O}(\min\{ \frac{n}{k}, \frac{m}{k^2} + \frac{\Delta}{k} \}) \)-round MIS algorithm of
Klauck et al. [26]. This result follows from a more general result, namely a simulation
theorem that shows that any beeping algorithm with message complexity \(\text{msg} \), running in
\(T \) rounds can be simulated in the \(k \)-machine model in \(\tilde{O}(\text{msg}/k^2 + T) \) rounds. Beeping
algorithms [1, 18, 25, 40] use extremely simple communication – just beeps – and node
actions in a round only depend on whether a node has heard a beep (or not) in this round.
Our result illustrates a general theme: algorithms in standard models of distributed
computation can be automatically translated into efficient algorithms in models of large-
scale distributed computing if they (i) use simple communication and (ii) if they have
low round complexity and message complexity.

We also present an \(\tilde{O}(n/k^2) \) lower bound for MIS, the first non-trivial lower bound for
a symmetry breaking problem in the \(k \)-machine model. Our proof starts by showing
that in the 2-party communication complexity setting, there is a \(O(1) \)-sized graph gadget
for which Alice and Bob need to communicate \(\Omega(1) \) bits to find an MIS. We use an
information-theoretic argument to show this and then using a direct sum type argument,
we amplify this result to show an \(\Omega(n) \) lower bound on the communication complexity of
MIS. We then reduce the \(k \)-machine MIS problem to the 2-party MIS problem to obtain
the result, which holds even for randomized algorithms with a constant error probability. It is worth noting that this approach does not yield a 2-ruling set lower bound since 2-ruling sets can be computed in the 2-party setting without any communication!

Hierarchical sampling for ruling set upper bounds. We use hierarchical sampling to obtain a k-machine β-ruling set algorithm, for $\beta > 1$, that is faster than the fastest known MIS algorithm. A similar hierarchical sampling approach also leads to one-pass β-ruling set algorithms in both the insertion-only and the insertion-deletion edge-streaming models that use strictly subquadratic space. Specifically, for the β-ruling set problem, we present an $\tilde{O}(\beta \cdot n^{1/\beta} / k^2)$-round algorithm in the k-machine model and one-pass streaming algorithms using space $\tilde{O}(\beta \cdot n^{1+1/\beta})$. Our k-machine β-ruling set algorithm is faster than the fastest known MIS algorithm, even for $\beta = 2$. But this result does not imply a separation between MIS and 2-ruling set in the k-machine model since we only know an $\tilde{O}(n/k^2)$ lower bound for MIS. However, the streaming algorithm we present implies a clear separation between MIS and 2-ruling sets in this model due to the $\Omega(n^2)$ space lower bound for MIS [12, 5]. For insertion and deletion streams, we use L_0-sampling [22] as the basic building block of our algorithm.

Faster k-machine 2-ruling set algorithm. For the special case of 2-ruling sets, we present an even faster algorithm, one that runs in $\tilde{O}(n/k^2 - \epsilon + k^{1-\epsilon})$ rounds for any $0 \leq \epsilon \leq 1$. For $\epsilon = 0$, this yields an $\tilde{O}(n/k^2 + k)$-round algorithm, which simplifies to $\tilde{O}(n/k^2)$ rounds for $k \leq n^{1/3}$. We conjecture that $\tilde{O}(n/k^2)$ is a lower bound for 2-ruling sets in the k-machine model, and proving this would show that the above-mentioned upper bound is tight. This algorithm uses a combination of greedy-style sequential processing technique that is tailored to the k-machine model, and a beeping version of the low message complexity 2-ruling set algorithm of [34, 33] originally designed for the CONGEST model.

1.2 Related Work

The fastest MIS algorithm in the classical LOCAL and CONGEST models of distributed computing is still the three-decade old algorithm due to Luby [29] and independently due to Alon, Babai, and Itai [4]. This algorithm runs in $O(\log n)$ rounds and closing the gap between this upper bound and the $\Omega\left(\min\left\{\frac{\log n}{\log \log n}, \frac{\log \Delta}{\log \log \Delta}\right\}\right)$ lower of Kuhn, Moscibroda, and Wattenhofer [28] is a major open question in this area. Assuming a bounded maximum degree, faster MIS algorithms have been very recently designed for both the LOCAL model [9, 14] and the CONGEST model [15]. β-ruling sets have also recently garnered interest in the LOCAL and CONGEST models [10, 27, 9, 10, 14, 15] and the fastest 2-ruling set algorithm in the LOCAL model breaks the Kuhn-Moscibroda-Wattenhofer lower bound and runs faster than any MIS algorithm can.

Research on algorithms and lower bounds in the k-machine model has been mentioned earlier in the introduction. The massive parallel computation (MPC) model is related to the k-machine model, but there are important differences in local memory and bandwidth constraints between the models. The study of classical symmetry breaking problems, especially MIS, in the MPC model is a very active area of current research [16, 17].

Many of the classic symmetry breaking problems in distributed computing have been studied in the streaming model. As mentioned earlier, there is a space $\tilde{O}(n^2)$ lower bound for MIS for one pass algorithms [12, 5]. If multiple passes are granted, it is possible to use the correlation clustering algorithm of [2] to compute an MIS in p passes using space $\tilde{O}(n^{1 + 1/p^\epsilon})$. A maximal matching can easily be maintained in the streaming model with space $\tilde{O}(n)$, by running the Greedy matching algorithm. Similar to the distributed setting where computing
a $(\Delta + 1)$-coloring is easier than computing an MIS, in a recent breakthrough, Assadi et al. [5] gave a one-pass streaming algorithm with space $\tilde{O}(n)$ for $(\Delta + 1)$-coloring, even in insertion-deletion streams.

Remark. Due to space constraints proofs are omitted from Sections 2.2 and 3.1. These are included in the full version of the paper.

2 Upper and Lower Bounds for MIS

2.1 An $\tilde{O}(m/k^2)$ upper bound for k-machine MIS

This section presents an $\tilde{O}(m/k^2)$-round MIS algorithm in the k-machine model, improving on the current fastest MIS algorithm due to Klauck et al. [26] that runs in $O(m/k^2 + \Delta/k)$ rounds.

The Klauck et al. MIS algorithm is simply obtained by simulating Luby’s MIS algorithm in the k-machine model. Here we show a general result first, that beeping model algorithms [1, 18, 25, 40] can be efficiently simulated in the k-machine model and then apply this result to the $O(\log n)$-round beeping model MIS algorithm of Jeavons et al. [21].

The beeping model assumes a network of nodes that synchronously communicate, but only in beeps. A node in this model can distinguish between two situations in a round: (i) no neighbor has beeped versus (ii) at least one neighbor has beeped. The beeping model is motivated by communication in wireless networks [18, 25] and also in biological processes that solve complex problems using very simple messages e.g., neural precursor selection in the *Drosophila* fly [1]. In both of these applications, it is found that despite the simplicity of communication, beeping model algorithms are quite powerful. Our motivation for simulating beeping algorithms in the k-machine model is similar; since a beeping algorithm has simple communication, it is easy to simulate it efficiently in the k-machine model, yet for some problems (e.g., MIS) beeping algorithms seem as powerful as algorithms that use more complex communication schemes.

To state the efficiency of our simulation, we need to define the message complexity of a beeping algorithm. Viewing each beep as a broadcast, we assume that a node v sends $\deg(v)$ messages whenever it beeps. We define message complexity, $msg(A)$, of an algorithm A in the beeping model as the total number of messages sent during the course of the algorithm. The simulation itself is simple. Each machine performs local computations on behalf of all nodes it hosts and then sends and receives messages (beeps) on behalf of these nodes. The simulation can be done efficiently because each machine can aggregate beeps in two ways. First, if a node v hosted by machine M has several neighbors hosted by machine M', then M needs to send just one beep on v’s behalf to its neighbors in M'. This aggregation works for any broadcast algorithm and it is exploited in the Conversion Theorem in [26]. Additional aggregation is possible because the algorithm is in the beeping model. Specifically, if M hosts several nodes u_1, u_2, \ldots, u_p that have a common neighbor v hosted by M', then M can send just one beep on behalf of all of u_1, u_2, \ldots, u_p to v in M'.

Theorem 1. A beeping algorithm A that runs in T rounds can be implemented in the k-machine model in $\tilde{O}(\frac{msg(A)k^2}{m^2} + T)$ rounds.

3 Klauck et al. also point out that there is simple $\tilde{O}(n/k)$-round MIS k-machine algorithm. This allows Klauck et al. to state the running time as $\tilde{O}\left(\min\left\{\frac{n}{k}, \frac{m}{k^2} + \frac{\Delta}{k}\right\}\right)$. Our result improves this to $\tilde{O}\left(\min\left\{\frac{n}{k}, \frac{m}{k^2}\right\}\right)$.
Proof. Let a_t denote the message complexity of algorithm A in round t. A node that beeps in round t is said to be active in round t. (Note that a_t is the sum of the degrees of nodes that are active in round t.) Partition the active nodes in round t by their degree into $O(\log \Delta)$ degree classes; $[1, 2], [2, 4], [4, 8], \ldots, [\Delta/2, \Delta], [\Delta, 2\Delta)$. Consider a degree class $[d, 2d)$ and let n_d denote the number of active nodes in round t in this class.

Claim 2. A machine sends $\tilde{O}(\frac{a_t}{k} + k)$ messages whp for active nodes in degree class $[d, 2d)$ in the simulation of round t.

Proof. Consider a message $m_{\text{msg}, i, j}$ that is intended for a machine m_j. Let $E_{\text{msg}, i, j}$ denote the event that message m_{msg} ends up at machine m_j at the end of Step 2. Let $X_{\text{msg}, i, j}$ denote the indicator random variable is 1 iff event $E_{\text{msg}, i, j}$ occurs, otherwise it is 0. Now, consider
We use Algorithm 1 to route all messages in the simulation of round $t \tilde{O}(\frac{m}{k^2} + 1)$ rounds. Since t is any arbitrary round, we can simulate all T rounds of A in the k-machine model in $\sum_{1 \leq t \leq T} \tilde{O}(\frac{m}{k^2} + 1) = \tilde{O}(\frac{msg(A)}{k^2} + T)$ rounds. This completes the proof of the theorem.

The following result is immediate by applying the simulation result above to the $O(\log n)$-round beeping model MIS algorithm of Jeavons et al. [21].

\textbf{Theorem 4.} MIS can be computed in $\tilde{O}(\frac{m}{k^2})$ rounds in the k-machine model, where m is the number of edges in the input graph.

\section{An $\tilde{\Omega}(n/k^2)$ lower bound for k-machine MIS}

In this section, we show an $\tilde{\Omega}(\frac{n}{k^2})$ lower bound for MIS. While numerous lower bounds have been shown for the k-machine model for problems such as pagerank approximation, triangle enumeration, and graph connectivity (see [35, 36, 26]), these techniques cannot be applied directly to our setting. The reason for this is that the proof technique in previous work heavily relies on the fact that the input graph determines the unique correct solution, whereas, there are many feasible maximal independent sets for a given input graph.

In our proof we proceed as follows: We start out by considering the problem in the 2-party communication model of [38]. In particular, in Section 2.2.1 we first prove an $\Omega(1)$ communication complexity lower bound for solving MIS on a constant size gadget, which we subsequently extend to a lower bound for solving $\Theta(n)$ independent copies of the gadget. In Section 2.2.3, we describe how to extend this result to the k-machine model.
2.2.1 A 2-party MIS Lower Bound For a Single Gadget

▶ Theorem 5. The two party communication complexity of MIS on constant-size graphs is $\Omega(1)$.

In the remainder of this section we prove Theorem 5. We define a 7-digit vector $s = s_1 s_2 \ldots s_7$ as valid if each s_i is in the range $[1, 7]$ and for exactly two of its digits $s_i \neq i$. Moreover, it must be that if $s_i \neq i$ and $s_j \neq j$, then $s_i = j$ and $s_j = i$. Suppose that Alice and Bob receive inputs X and Y chosen uniformly at random from all valid 7 digit vectors. Since there are 21 such valid vectors, and X and Y are chosen uniformly at random from all valid vectors, $H[X] = H[Y] = \log_2 21$.

We will show that Alice and Bob can construct a gadget g based on the inputs X and Y such that for any MIS I of g, either the conditional mutual information, $I[A \mid I | X]$ or $I[B \mid I | Y]$ is $\Omega(1)$. As it is well known that mutual information lower bounds communication complexity [8], this immediately implies the lower bound claimed in Theorem 5.

The lower bound gadget

The gadget g consists of 14 nodes, $V_A = \{u_1, \ldots, u_7\}$ and $V_B = \{v_1, \ldots, v_7\}$. Conceptually, the u nodes are hosted at Alice and the v nodes are hosted at Bob. The gadget contains 7 edges (u_i, v_i) for $i \in [1, 7]$. Additionally, the gadget also contains two special edges that are determined by the inputs X and Y. Based on the input $X = x_1 \ldots x_7$, Alice will add a single edge between a pair of u nodes. Specifically, for the two indices i and j ($i \neq j$) in its input vector where $x_i = j$ and $x_j = i$, Alice adds the edge (u_i, u_j). Thus, each valid vector X corresponds to a unique edge between the u nodes. Similarly, Bob will add one edge to its nodes based on its input Y. We call these two edges special edges. Note that except for the two special edges, the topology of the gadget is independent of the inputs X and Y.

The following lemma suffices to prove Theorem 5.

▶ Lemma 6. Let I_A resp. I_B denote the vertices in the MIS output by Alice resp. Bob. Either $I[X : I_B | Y] = \Omega(1)$ or $I[Y : I_A | X] = \Omega(1)$.
2.2.2 A 2-Party Lower Bound for Multiple Gadgets

Recalling that any pair of valid bit vectors \((X, Y)\) uniquely defines the topology of a gadget, we call \((X, Y)\) the value of the gadget and, to simplify the notation, we also use \((X, Y)\) to refer to the gadget itself.

Theorem 7. The two party communication complexity of MIS on graphs with \(O(n)\) nodes and edges is \(\Omega(n)\).

In the rest of this subsection, we prove Theorem 7. Consider again the two party communication complexity model where Alice receives input \(X\) and Bob receives input \(Y\). We now consider \(X\) and \(Y\) to be vectors of length \(n/2\) and we conceptually think of such a vector as the concatenation of \(n/14\) 7-digit vectors as defined in Section 2.2.1. We say that an \((n/2)\)-length digit vector \(S = s_{1,1}s_{1,2}s_{2,1}s_{2,2}...s_{n/14,7}\) is valid, if \((s_{i,1}...s_{i,7})\) forms a valid 7-digit vector, for all \(i \in [1, n/14]\). Let \(X\) and \(Y\) be two \(n/2\) digit vectors chosen uniformly at random from all valid \((n/2)\)-length digit vectors. According to the inputs \(X\) and \(Y\), Alice and Bob will construct the lower bound graph \(G_L\), having the property that, for any MIS \(I\) of \(G_L\), either the mutual information between Alice’s MIS output and Bob’s input or between Bob’s MIS output and Alice’s input is \(\Omega(n)\).

We now describe how to construct the lower bound graph. \(G_L\) contains \(n\) nodes partitioned into sets \(V_A := \{u_1, ..., u_{n/2}\}\) and \(V_B := \{v_1, ..., v_{n/2}\}\). All the nodes in \(V_A\) are hosted at Alice and all the nodes in \(V_B\) are hosted at Bob. The edges of \(G_L\) induce \(n/14\) gadgets \(\{g_i, g_{i+1}\}\) where gadget \(g_i\) contains nodes \(u_{7i+1}, ..., u_{7i+7}\) and \(v_{7i+1}, ..., v_{7i+7}\). The value of gadget \(g_i\) is \((x_{i,1}...x_{i,7}, y_{i,1}...y_{i,7})\). For example, gadget \(g_1\) contains nodes \(u_1, ..., u_7\) and \(v_1, ..., v_7\), and has value \((x_{1,1}...x_{1,7}, y_{1,1}...y_{1,7})\). Notice that the topology of \(G_L\) depends only on the inputs \(X\) and \(Y\).

Theorem 7 follows immediately from the following lemma.

Lemma 8. Either \(I[X : I_B | Y] = \Omega(n)\) or \(I[Y : I_A | X] = \Omega(n)\).

2.2.3 Extension to the \(k\)-machine model

We are now ready to extend our results from the 2-party communication setting to the \(k\)-machine model. Specifically, we want to show a lower bound for \(\varepsilon\) error (possibly randomized) algorithms i.e., algorithms which, over all graph partitions (and random coin tosses), outputs a MIS with probability at least \((1 - \varepsilon)\), and always terminates in \(T\) rounds.

Theorem 9. For a constant \(\varepsilon > 0\), any \(\varepsilon\)-error (possibly randomized) MIS algorithm in the \(k\)-machine model has round complexity at least \(\tilde{\Omega}(\frac{n}{\varepsilon^2})\).

3 Ruling sets via hierarchical sampling

3.1 An Algorithm for the \(k\)-machine Model

In Algorithm 2 we use hierarchical sampling to compute a \(\beta\)-ruling set of an \(n\)-vertex graph with maximum degree \(\Delta\) in \(\tilde{O}(n\Delta^{1/\beta}/k^2)\) rounds. A hierarchical sampling approach has also been used in [10] to compute \(\beta\)-ruling sets and combined with the MIS algorithms of Ghaffari [14, 15], yields the fastest \(\beta\)-ruling set algorithms in the LOCAL and CONGEST models. But there are key differences between the LOCAL/CONGEST algorithms and our \(k\)-machine algorithm because the bandwidth constraints of the \(k\)-machine model are quite stringent (for e.g., it seems difficult for nodes that are deactivated to efficiently inform their neighbors of this fact in the \(k\)-machine model).
In each iteration i, $2 \leq i \leq \beta$, in Algorithm 2, we independently sample active nodes with probability $\Theta(\log n/\Delta^{1-(i-1)/\beta})$ (Step (3)). In each iteration, we get a sampled graph that is communicated across the k machines (Step (5)) and then we compute an MIS on this sampled graph (Step (6)). Note that in order to communicate the sampled graph, each sampled node needs to communicate with all neighbors and not just sampled neighbors because a priori a node does not know which neighbors have been sampled. Thus for the communication step to be efficient, i.e., complete in $\tilde{O}(n \Delta^{1/\beta}/k^2)$ rounds, as shown in Lemma 12, nodes participating the sampling step need to have relatively low degree. To ensure this high degree nodes need to be deactivated in each iteration. A node that has more than $\Delta^{1-(i-1)/\beta}$ neighbors participating in the sampling step in Iteration i is guaranteed (whp) to have a sampled neighbor and such a node will deactivate itself if it is not marked. But, a node may have high degree but with only few neighbors participating in the sampling step. A node v of this type is guaranteed to have neighbors that were deactivated in previous iterations. By inductively assuming that a node deactivated in an earlier round is not too far away from some node that has joined the ruling set, we get that node v itself is at most one extra hop away from the ruling set and can be deactivated (as in Step (7)).

Algorithm 2 RAND β-ruling set(Graph $G = (V,E)$).

1. $P_1 \leftarrow V$
2. for iteration $i \leftarrow 2$ to β do
3. Each node in P_{i-1} marks itself with probability $\Theta(\log n/\Delta^{1-(i-1)/\beta})$.
4. $M_i \leftarrow$ nodes marked in the previous step
5. Each node in M_i informs all neighbors that it is marked
6. $I_i \leftarrow \text{MIS}(G[M_i])$
7. Each unmarked node that has a neighbor in M_i or has degree $> \Delta^{1-(i-1)/\beta}$ joins the set T_i and is deactivated
8. $P_i \leftarrow P_{i-1} \setminus (M_i \cup T_i)$
9. end
10. Each node in P_i informs neighbors that it is in P_i
11. $I \leftarrow \text{MIS}(G[P_i])$
12. return $(\bigcup_{j=2}^\beta I_j) \cup I$

▶ Lemma 10. For $1 \leq i \leq \beta$, the maximum degree of nodes in P_i is at most $\Delta^{1-(i-1)/\beta}$.

▶ Lemma 11. For $2 \leq i \leq \beta$, the maximum degree of the induced graph $G[M_i]$ is at most $\tilde{O}(\Delta^{1/\beta})$ whp.

▶ Lemma 12. The communication in Steps (5) and (10) can each be completed in $\tilde{O}(n \Delta^{1/\beta}/k^2)$ rounds whp. The MIS computation in Steps (6) and (11) can each be completed in $\tilde{O}(n \Delta^{1/\beta}/k^2)$ rounds whp.

▶ Lemma 13. Every node in V is at most β hops from some node in $(\bigcup_{j=2}^\beta I_j) \cup I$.

▶ Theorem 14. For any integer $\beta \geq 1$, a β-ruling set of an n-vertex graph with maximum degree Δ can be computed in $\tilde{O}(\beta \cdot n \cdot \Delta^{1/\beta}/k^2)$ rounds.

3.2 A One-Pass Edge-Streaming Algorithm

We now use the hierarchical sampling approach to obtain a low-memory algorithm for β-ruling sets in the edge streaming model, for $\beta > 1$. As mentioned in Section 1, our algorithm stands in contrast to the $\Omega(n^2)$ space lower bound for MIS of [12].
We call u a neighbor of v if a neighbor of v is a neighbor of u. We argue that every node has distance at most $2q$ to some neighbor of u. Since u is not covered, i.e., the algorithm did not store an incident edge of u, we need to show that the following claim holds (after the post-processing step): For every $u \in \mathcal{V}$, we store the first $\ell(u) := \Theta(n^q \log n)$ edges that contribute to u’s active degree, i.e., connect u to nodes in $P_{\ell(u)} \cup \cdots \cup P_{\beta}$; recall that $P_{\ell(u)} \cup \cdots \cup P_{\beta} \subseteq P_{\ell(u)}$. Observe that (1) implies that we store all incident edges for vertices in P_{β}. Upon storing the $\mu_{\ell(u)}$-th edge for u, we mark u as covered. While processing the stream, we discard all edges that connect two nodes if they are both marked as covered.

Post-Processing. After the pass is completed, we move every $u \notin P_{\beta}$ that is not covered to the set P_{β} and set $\ell(u) = \beta$. As the last step of the algorithm, we compute an MIS S on the graph spanned by the stored edges of nodes in P_{β} (after post-processing) and output S as the result.

Lemma 15. The algorithm outputs a β-ruling set with high probability.

Proof. We first prove that the resulting output S is indeed an independent set. To this end, we need to show that the following claim holds (after the post-processing step): For every $u, v \in P_{\beta}$, if there exists $(u, v) \in E$ then also $(u, v) \in E(P_{\beta})$, where $E(P_{\beta})$ refers to the stored edges incident to nodes in P_{β}: Assume towards a contradiction that the claim is false, i.e., the algorithm did not store (u, v). We distinguish 3 cases:

1. If both u and v had level β before post-processing, then we would have stored (u, v), as we store all incident edges for nodes in P_{β}.
2. Suppose only u is moved from its previous level i, whereas v was already in P_{β} after the initial sampling. It follows that u was not covered and hence, by definition, the edge (u, v) must have been among the first $\mu_{\ell(u)}$ edges in the stream that were incident to u and that have their other endpoint in $P_{\ell(u)} \cup \cdots \cup P_{\beta}$. By the description of the algorithm, we would have stored (u, v), yielding a contradiction.
3. Finally, suppose u and v were both moved to P_{β} and assume (wlog) that $\ell(u) \leq \ell(v)$ before the post-processing step. By a similar argument as in the previous case, it follows that we would have stored the edge (u, v) as one of the first $\mu_{\ell(u)}$ incident edges of u that point to $P_{\ell(u)} \cup \cdots \cup P_{\beta}$, again resulting in a contradiction.

Next, we show that the output set S satisfies the distance property of β-ruling sets, i.e., we argue that every node has distance at most β from some node in S with high probability. Recalling that we compute an MIS on the graph induced by P_{β}, this clearly holds for any node that has level β at this point. Thus, consider a node u with level $\ell(u) = i < \beta$ and assume that u was not moved, i.e., i continues to be the highest level of u after the post-processing step. Since $u \notin P_{\beta}$, we know that u was covered and hence we stored at least μ_i many edges incident to u that point to $P_i \cup \cdots \cup P_{\beta}$. Let $N_i(u)$ denote the corresponding set of neighbors of u for which the algorithm stores edges, i.e., $|N_i(u)| \geq \mu_i = n^{q_i} \log n$. Note that if a neighbor of u in $N_i(u)$ is moved to P_{β} in the post-processing step, this can only reduce...
26:12 The Complexity of Symmetry Breaking in Massive Graphs

the distance of \(u \) to a node in the independent set. Therefore, it is sufficient if we show that at least one of \(u \)'s neighbors in \(N_i(u) \) is also part of some level greater than \(i \). The probability that none of the \(\mu_i \) nodes in \(N_i(u) \) is in \(P_{i+1} \cup \cdots \cup P_\beta \) is at most

\[
\left(1 - \Theta \left(\frac{1}{n^{0.1}} \right) \right)^{\Theta(n^{0.1} \log n)} \leq \frac{1}{n^{\Omega(1)}}.
\]

The result follows by taking a union bound over all the nodes.

\(\triangleright \) **Lemma 16.** The algorithm uses \(O \left(\beta \cdot n^{1+1/2^{\beta-1}} \log n \right) \) space with high probability.

Insertion-Deletion Streams

We now describe how to modify the above algorithm to work for insertion-deletion streams. The key observation is that the hierarchical sampling is done completely independently of the input stream and can be done beforehand. The only task remaining while processing the stream is storing a certain number of incident edges to a specific vertex that are also incident to a specific set. In insertion-only streams, this is straightforward. In insertion-deletion streams, we can simply use enough \(L_0 \)-samplers:

Given a stream of edge insertions and deletions, an \(L_0 \)-sampler is able to output a uniform random edge of the input graph (the graph obtained after all insertions and deletions have been applied). This technique can be adapted to most edge sampling tasks, such as sampling a uniform random edge incident to a specific vertex, or, by employing \(\Theta(k \log n) \) \(L_0 \)-samplers, sampling \(k \) different edges incident to a specific vertex, as is required in our setting. Jowhari et al. [22] showed how to implement an \(L_0 \)-sampler in insertion-deletion streams in small space:

\(\triangleright \) **Theorem 17 ([22]).** There exists an \(L_0 \) sampler for insertion-deletion streams that uses space \(O(\log^2 n \log(1/\delta)) \) and succeeds with probability \(1 - \delta \).

For instance, say we want to store \(\alpha \) edges incident to a specific vertex \(v \). Leveraging Theorem 17 tells us that we only add a polylogarithmic overhead by running \(\Theta(\alpha \log n) \) \(L_0 \) samplers, and we can recover at least \(\alpha \) different edges incident to \(v \). Together with Lemmas 15 and 16, this implies the following result:

\(\triangleright \) **Theorem 18.** In both, the insertion-only and the insertion-deletion models, there are randomized one-pass streaming algorithms with space \(\tilde{O}(\beta \cdot n^{1+1/2^{\beta-1}}) \) for computing a \(\beta \)-ruling set that succeed with high probability.

4 Faster 2-ruling sets in the \(k \)-machine model

The hierarchical sampling approach from Section 3.1 yields a \(k \)-machine, 2-ruling set algorithm running in \(\tilde{O}(n \Delta^{1/2}/k^2) \) rounds. In this section we use a different approach to obtain a \(k \)-machine 2-ruling set algorithm that runs in \(\tilde{O}(n/k^{2-\epsilon} + k^{1-\epsilon}) \) rounds for any \(\epsilon, 0 \leq \epsilon \leq 1 \). Setting \(\epsilon = 0 \) yields an \(\tilde{O}(n/k^2 + k) \)-round algorithm; for \(k \leq n^{1/3} \) this is an \(\tilde{O}(n/k^2) \)-round algorithm. The optimal value of \(\epsilon \), i.e., the value that minimizes the expression \(n/k^{2-\epsilon} + k^{1-\epsilon} \), turns out to be \(\epsilon = \frac{1}{2} \left(3 - \frac{n}{\log k} \right) \). For example, for \(k = \sqrt{n} \), \(\epsilon = 1/2 \) is optimal and the running time simplifies to \(\tilde{O}(n^{1/2}) \) rounds.

Our algorithm consists of two phases. In the first phase, we perform \(\lceil k^\epsilon \rceil \) iterations where we process the input graph in a sequential fashion. We say that a vertex is active if its MIS-status is yet undefined; otherwise we say that it is deactivated. In iteration \(i \geq 1 \) of
Phase 1, the machine m_i locally computes an MIS S_i on its part of the input and then sends S_i to all other machines using an intermediate routing step. In more detail, after computing the MIS, m_i sends the vertices in S_i in batches of size $k - 1$, by transmitting the vertex IDs of the first $k - 1$ vertices in S_i to the other machines over its $k - 1$ links. The other machines simply relay these messages by broadcast. It is easy to see that all machines know about all nodes in S_i after m_i has sent $O(S_i/k) = \tilde{O}(n/k^2)$ batches. Before proceeding to the next iteration, each machine locally deactivates every vertex that has a neighbor in S_i.

The remaining active nodes form the residual graph and machine m_{i+1} operates on its local part of this graph in the next iteration, and so forth. After we have finished all $[k']$ iterations, each machine simply deactivates all of its vertices that are still active and have a neighbor on some machine m_j, for $j \in [1, [k']]$. In Lemma 19 below, we show that with high probability only vertices with (initial) degree $O(k^{1-\epsilon})$ remain active after Phase 1. We define I to be the independent set obtained by Phase 1.

For Phase 2, we use the low message complexity 2-ruling set algorithm of Pai et al. [34, 33]. This algorithm runs in the CONGEST model in $O(\Delta \log n)$ rounds, with message complexity $O(n \log n)$. If we can come up with a beeping version of this 2-ruling set algorithm, then by using the Simulation Theorem (Theorem 4 in Section 2.1) we could obtain a k-machine algorithm that runs in $\tilde{O}(n/k^2 + \Delta)$ rounds. By Lemma 19, Δ is bounded above by $\tilde{O}(k^{1-\epsilon})$ after Phase 1, and thus Phase 2 would run in $\tilde{O}(\frac{n}{k} + k^{1-\epsilon})$ rounds. The final 2-ruling set consists of the union of set I obtained in Phase 1 and the 2-ruling set resulting from Phase 2.

Note that when starting to execute Phase 2, a machine m_j might not be aware that some of the neighbors of one of its vertices u have already been deactivated in the course of Phase 1. This does not have any effect on the round complexity of the algorithm.

This pseudocode of this two-phase algorithm is described in Algorithm 3.

\begin{algorithm}
\begin{algorithmic}[1]
\Comment{Phase 1: Sequential Processing}
\State $G_r \leftarrow G$;
\State $I \leftarrow \emptyset$;
\For {$i \leftarrow 1, \ldots, [k']$} \Comment{Machine m_i locally computes an MIS S_i on its vertices;}
\State m_i communicates S_i to all machines;
\State S_i and all neighbors of nodes in S_i are removed from G_r;
\EndFor
\State $G_{low} \leftarrow$ graph induced by nodes in G_r that do not have a neighbor in any machine m_j, $j \in [1, [k']]$; \Comment{Phase 2: Low Message Complexity 2-Ruling Set}
\State Compute a 2-Ruling Set, I' for the graph G_{low} using the algorithm of Pai et al. [34, 33];
\State $I \leftarrow I \cup I'$;
\State Return I;
\end{algorithmic}
\caption{TwoPhaseTwoRulingSet($G = (V, E)$, ϵ).}
\end{algorithm}

Lemma 19. The time complexity of Phase 1 is $\tilde{O}(n/k^{2-\epsilon})$. Moreover, after Phase 1, the maximum vertex degree in the residual graph is $O(k^{1-\epsilon} \log n)$ with high probability.

Proof. We first show the time complexity. Consider iteration $i \geq 1$ in which machine m_i locally computes an MIS. By the description of the algorithm, m_i sends its MIS-vertices in batches of size $O(k)$ and each machine simply broadcasts the message that it receives from m_i. Thus processing a single batch takes 2 rounds and since each batch processes $O(k)$ vertices, we can complete iteration i in $\tilde{O}(n/k^2)$ rounds. The time complexity bound follows since there are $[k']$ iterations.
We next show that only vertices that have degree \(O(k^{1-\epsilon} \log n)\) remain active after Phase 1. Assume in contradiction that there is some vertex \(v\) that has degree \(\Omega(k^{1-\epsilon} \log n)\). Since the neighbors of \(v\) were assigned to machines using random vertex partitioning, the probability that none of them is on any of the \([k^\epsilon]\) machines that locally processed their vertices in Phase 1 is at most
\[
\left(1 - \frac{1}{k^{1-\epsilon}}\right)^{\Omega(k^{1-\epsilon} \log n)} \leq \frac{1}{n^\Omega(1)}.
\]
Since the machine hosting \(v\) knows which machines have neighbors of \(v\), it will deactivate \(v\) with high probability. The lemma follows by taking a union bound over all vertices.

We next show that the vertices that we added when computing the local MISs in Phase 1 (and the vertices that we deactivated in the process) form a valid 2-ruling set on the induced subgraph.

\[\textbf{Lemma 20.} \quad \text{After Phase 1, the deactivated vertices form an independent set } I \text{ and each deactivated vertex has distance at most 2 to some node in } I.\]

\[\textbf{Proof.} \quad \text{Clearly, no two vertices in } I \text{ are neighbors since all machines deactivate neighbors of nodes that were added to the (local) MISs before proceeding to the next iteration. To see that each deactivated vertex } v \text{ has distance at most 2, we distinguish two cases based on how } v \text{ was deactivated. The first possibility is that } v \text{ is a neighbor of some node in } I \text{ and we deactivated it during some iteration, in which case the distance property trivially holds. The other possibility is that } v \text{ was deactivated because it had a neighbor } w \text{ on some machine } m_j, \text{ for } j \in [1,[k^\epsilon]]. \text{ Since } m_j \text{ (locally) computed an MIS on its vertices, it follows that } w \text{ has distance at most 1 to some node in } I \text{ and the result follows.} \quad \blacksquare\]

In Phase 2, we use the algorithm of Pai et al. \([34, 33]\) to compute a 2-ruling set for the graph induced by nodes that are still active and have degree at most \(c \cdot \frac{\Delta}{k^\epsilon \log n}\) in \(G\). In this algorithm, \textsc{category-1} refers to nodes that have joined the ruling set, \textsc{category-2} refers to their neighbors, and \textsc{category-3} refers nodes that have a \textsc{category-2}, but not a \textsc{category-1} node in their neighborhood. This algorithm is similar to Luby’s MIS algorithm, with two key differences to keep the message complexity low, at the cost of round complexity. First, the probability of a vertex \(v\) being marked stays fixed at \(1/2d(v)\) and does not increase as its neighborhood shrinks. Second, a node that is marked first uses a few messages to determine if it should deactivate itself because it has a \textsc{category-2} node in its neighborhood. This \textit{Checking Sampling Step} plays a key role in reducing the message complexity of this algorithm to \(O(n \log n)\). Below we show that this algorithm can be implemented in the \(k\)-machine model in \(\tilde{O}(n/k^2 + \Delta)\) rounds.

\[\textbf{Lemma 21.} \quad \text{The message-efficient 2-ruling set algorithm of } [34, 33] \text{ can be implemented in the } k\text{-machine model in } \tilde{O}(n/k^2 + \Delta) \text{ rounds.} \]

\[\textbf{Proof.} \quad \text{The 2-ruling set algorithm of } [34, 33] \text{ is not a beeping model algorithm and we cannot apply the Simulation Theorem (Theorem 1) directly to obtain an efficient } k\text{-machine model simulation. The difficulty is caused by steps in which a node } v \text{ needs to determine if a neighbor of same or higher degree has beeped. However, even in this case a machine } M \text{ can aggregate all the messages going to a node } v \text{ in a machine } M' \text{ by simply sending only the message to } v \text{ from the highest degree node it hosts. As in Theorem 1, this leads to a simulation in the } k\text{-machine model that runs in } \tilde{O}(msg/k^2 + T) \text{ rounds, where } msg \text{ is the message complexity and } T \text{ is the round complexity of the algorithm. Since Pai et al. } [34, 33] \text{ have shown that } msg \text{ is } O(n \log n) \text{ and } T \text{ is } O(\Delta \log n), \text{ the result follows.} \quad \blacksquare\]
Corollary 22. Phase 2 of Algorithm TwoPhaseTwoRulingSet can be completed in $\tilde{O}(n/k^2 + k^{1-\epsilon})$ rounds.

Combining Lemmas 19, 20, and Corollary 22, we obtain an overall running time of $\tilde{O}(\frac{n}{k^2} + \frac{n}{k^2} + k^{1-\epsilon}) = O(\frac{n}{k^2} + k^{1-\epsilon})$, which proves the following theorem:

Theorem 23. For any ϵ, $0 \leq \epsilon \leq 1$, a 2-ruling set can be computed in $\tilde{O}(\frac{n}{k^2} + k^{1-\epsilon})$ rounds in the k-machine model.

5 Future Work

Our results point to several natural followup questions:

1. Can we reconcile the gap between the $\tilde{O}(m/k^2)$ upper bound and $\tilde{\Omega}(n/k^2)$ lower bound for MIS? This seems related to the more fundamental question of showing tight bounds on the message complexity of MIS in the CONGEST KT1 model.

2. Is there an $\Omega(n/k^2)$ round lower bound for 2-ruling sets in the k-machine model? As pointed out earlier, our approach for the MIS lower bound that first proves an $\Omega(1)$-bit 2-party lower bound will not work for 2-ruling sets. Could an approach involving an $O(1)$-sized gadget distributed among 3 parties yield a lower bound for 2-ruling sets?

3. Can we improve the 2-ruling set upper bound to $\tilde{O}(n/k^2)$?

4. Can we prove non-trivial lower bounds on the space complexity of β-ruling sets in the one-pass edge-streaming model?

References

The Complexity of Symmetry Breaking in Massive Graphs

