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Abstract
The network capacity expansion problem is a key network optimization problem practitioners regularly
face. There is an uncertainty associated with the future traffic demand, which we address using a
scenario-based robust optimization approach. In most literature on network design, the costs are
assumed to be linear functions of the added capacity, which is not true in practice. To address this,
two non-linear cost functions are investigated: (i) a linear cost with a fixed charge that is triggered
if any arc capacity is modified, and (ii) its generalization to piecewise-linear costs. The resulting
mixed-integer programming model is developed with the objective of minimizing the costs.

Numerical experiments were carried out for networks taken from the SNDlib database. We
show that networks of realistic sizes can be designed using non-linear cost functions on a standard
computer in a practical amount of time within negligible suboptimality. Although solution times
increase in comparison to a linear-cost or to a non-robust model, we find solutions to be beneficial
in practice. We further illustrate that including additional scenarios follows the law of diminishing
returns, indicating that little is gained by considering more than a handful of scenarios. Finally,
we show that the results of a robust optimization model compare favourably to the traditional
deterministic model optimized for the best-case, expected, or worst-case traffic demand, suggesting
that it should be used whenever computationally feasible.
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1 Introduction

Network design and capacity planning has always been of strategic importance in most
organization. This implies that it needs to be decided far ahead of time based on the
estimation of future traffic demand. Projection for future traffic is usually done using traffic
measurements and population statistics in combination with other marketing data. This
often results in a large discrepancy between planned and actual carried traffic volume and
distribution.

1 Corresponding author

© Francis Garuba, Marc Goerigk, and Peter Jacko;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.garuba@lancaster.ac.uk
mailto:marc.goerigk@uni-siegen.de
mailto:p.jacko@lancaster.ac.uk
https://doi.org/10.4230/OASIcs.ATMOS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Robust Network Capacity Expansion with Non-Linear Costs

To provide a more detailed motivation and positioning of our paper, we focus on the
telecommunications field (other network design applications, such as line planning for public
transport, are also well within the scope of this work). Here, this discrepancy could be as
large as 10% according to [3]. Hence, the re-forecasting and re-planning becomes a continuous
exercise using traffic measurements and traffic optimization tools, which are often based on
deterministic concepts assuming the traffic demand is estimated without error.

The demand for capacity in mobile wireless networks has seen an ever-growing trend
in the last couple of decades and growth rate is expected to be even higher going into the
future. This explosion in demand for data is coming at a lower cost rate. This means that in
order to provide an acceptable quality of service, capacity will need to be regularly extended
with optimal investment in capital expenditure. This balancing act of traffic volume, quality
of service and capital expenditure has made network capacity expansion a key strategic
function resulting in high global telecoms investment. Similar capacity expansion challenges
are present to network designers and operators in other types of networks as well, such as
transport networks. The network capacity expansion problem can hence be considered one of
the key network optimization problems practitioners are expected to regularly face in present
and future.

To have a network that is robust against uncertain estimated traffic demand, this
uncertainty needs to be factored in already during the planning and design process, which
we address using a scenario-based robust optimization approach. This methodology is geared
towards producing results that are insensitive to the uncertain demand, by solving the problem
using two separate stages. In the first stage, we determine the capacity expansion, and in
the second stage, demand scenarios are realized. The resulting mixed-integer programming
model is developed with the objective of minimizing costs.

In most literature on network design, costs are assumed to be linear functions of the
added capacity, which is not true in practice. Real-world costs typically follow a volume
discount regime which is reflected by a non-linear function and can be attributed to bulk buy.
To address this, two non-linear cost functions are investigated in this paper: (i) a linear cost
with a fixed charge that is triggered if any arc capacity is modified, and (ii) its generalization
that is piecewise-linear in added capacity.

To the best of our knowledge, this is the first paper that includes non-linear cost
functions in the robust network capacity planning problem. This extension leads to a more
computationally-demanding model than the one with linear cost. The contributions of our
paper are as follows: We show that networks of realistic sizes can be designed using non-linear
cost functions in a practical amount of time within negligible suboptimality. We present
the benefits of considering a robust optimization model (even with two scenarios) instead
of the traditional deterministic model, and present the benefits of considering non-linear
costs instead of the usual linear costs. It is illustrated that including additional scenarios
approximately follows the law of diminishing returns, indicating that little is gained by
considering more than a handful of scenarios. Finally, we show that the results of a robust
optimization model compare favourably to the traditional deterministic model optimized
for the best-case, expected, or worst-case traffic demand, suggesting that it should be used
whenever computationally feasible.

The rest of this paper is organized as follows. Section 2 presents a literature review of
related research. In Section 3, we then introduce the problem description of robust network
capacity expansion and mathematical models. Experimental results using networks from
the SNDLib (see [21]) are discussed in Section 4. Finally, Section 5 concludes our work and
points out future research directions.
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2 Literature Review

2.1 Robust Optimization in Network Design
In robust optimization, we assume that all possible data scenarios are given in form of
an uncertainty set. For general surveys, we refer, e.g., to [13, 14]. The classic approach
aims at finding a solution that is feasible for all scenarios from the uncertainty set, while
optimizing a worst-case performance. This approach is relaxed through two-stage robust
optimization, where not all decisions need to be taken in advance, see [6]. Instead, one
distinguishes between “here and now” decisions that need to be fixed in advance, and “wait
and see” variables that are determined once a scenario has been revealed. Two-stage robust
optimization problems are also known as adjustable robust counterparts.

Adjustable robust optimization has been applied to wireless telecommunication services
in the area of network design and expansion. This helps to model decisions that are delayed
in time, e.g., traffic needs to be routed only once the demand scenario is known. Three
closely related problems are the radio network design problem, the radio network loading
problem and the virtual private network problem [17].

In telecoms, the long term strategic network planning can be viewed as the first stage “here
and now” decision making, while the traffic redistribution that occurs after the realisation of
the traffic demand pattern would be the second stage “wait and see” adjustment decision.
Unrestricted second stage recourse in robust network design is called dynamic routing, see [7].
Most applications of adjustable robust optimization have focused on approximations that
put a restriction on the recourse.

A special type of recourse restriction based on a specific type of uncertainty model (Hose
model) has been proposed independently by [11] and [12] for an asynchronous transfer mode
and broadband traffic network. They also introduced the concept of static routing, which [5]
applied under their generalized polyhedral uncertainty model using a column and constraint
generation algorithm. [20] investigated network capacity expansion under demand and cost
uncertainty and recently, [23] used a cutting plane algorithm while taking into consideration
the outsourcing costs for unmet demand. Some papers use an affine decision rule to restrict
the recourse decisions, thus creating a tractable robust counterpart. [22] introduced affine
routing in their robust network capacity planning model, while [24] and [3] used polyhedral
uncertainty sets. On the other hand, [2] study the problem in detail by exploiting the
underlying network structure.

2.2 Related Work on Non-linear Cost Functions
In general, routing costs, transportation costs or capacity costs can be a non-linear functions
of traffic flows. In the following, we review literature on fixed-charge costs and piecewise-
linear costs.

2.2.1 Fixed-Charge Cost Models
In a network with fixed-charge costs, an initial outlay cost is incurred to make an arc available.
In this setting, one needs to pay a fixed initial cost in addition to the arc expansion cost.
The fixed costs could be the installation costs, cabinet outlay costs, additional energy or
utility costs and line replacement costs. Applications are found in wide areas of network
design problems and not limited to energy networks, transportation and communication. A
survey is provided by [16] that demonstrate many applications in logistics, transportation
and communications. The fixed-charge cost network design problem (FCND) has been found
to be NP-hard, see [16, 19].

ATMOS 2019
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Literature on the FCND has concentrated on solution algorithms for the different model
variants. [8] addressed the multi-commodity capacitated FCND using a cutting plane
algorithm with an improvement on the mixed-integer programming (MIP) formulation. [9]
presented a detailed survey on the use of Benders decomposition to solving a wide range
of FCND’s which includes two facility networks. This can be viewed as a two-commodity
network with a variant that introduces a quality of service measure. In [1], a heuristic
approach for separating and adding violated partition inequalities was implemented. [26]
solved a FCND using a variant of Benders decomposition which they referred to as the
Bender-and-cut technique. The closest work to our model is [18]. Here, they formulate
a robust network design problem with both transportation cost and demand uncertainty.
Investment in arc capacity is modeled as a binary decision (i.e., expansion or no expansion).
The model is approximated using an affine decision rule.

2.2.2 Piecewise-Linear Cost Models

The piecewise-linear cost model (PLC) can be used to model costs with economies of scale.
In general, optimization problems involving PLC arise in domains including transportation,
communications networks, large scale integrated circuits, supply chain management and
logistics planning. They are usually modeled as MIPs, see [25]. The problem has been proven
to be NP-hard for general concave cost objective functions, see [15].

As is the case for fixed-charge costs, most literature in this domain tends to focus on
solution algorithms, see [10]. A continuous relaxation technique for solving network design
with piecewise-linear costs was presented by [19]. [15] noted that exact techniques based
on dynamic programming and branch and bound are only efficient for specific subclasses
of the problem. A number of MIP model formulations exist for piecewise-linear functions.
The names for these were unified in [27], which also provides a performance comparison. In
terms of execution speed, they recommended the use of Multiple Choice Model (MCM) by
[4] or the Incremental approach for a small number of segments.

3 Problem Formulation

We consider a multi-commodity network design problem where capacities are to be added on
top of existing ones on a subset of arcs, with the aim of minimizing the total cost involved
and so that routing of traffic for the different commodities over the arcs subject to design and
network constraints is possible. We call this problem the Robust Network Capacity Expansion
Problem (RNCEP). We first introduce the basic problem version with linear costs, before
introducing two non-linear cost extensions.

3.1 RNCEP with Linear Costs

A communications network topology can be represented by a directed connected graph
G = (V,A). Each of the arcs a ∈ A has an original capacity ua. The original capacity
on each arc a can be expanded at a cost ca per each additional unit of capacity. A set of
commodities K represents potential traffic demands. A commodity k ∈ K corresponds to
node pair (sk, tk) ∈ V ×V and a demand dk ≥ 0 for traffic from sk to tk. The actual demand
values are considered to be uncertain and depend on random scenarios ξ ∈ Ξ. We assume a
finite set Ξ = {ξ1, . . . , ξN} of possible demand scenarios and write dk(ξ) for the demand of
pair (sk, tk) in scenario ξ.
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The robust network capacity expansion problem is to find a minimum-cost installation of
additional capacities while satisfying all traffic demands dk(ξ) for all k ∈ K and all ξ ∈ Ξ. In
this respect, RNCEP is a two-stage robust program. The additional capacity we install on
arc a ∈ A is denoted by xa and is a first stage decision variable, which has to be fixed before
observing a demand realization ξ ∈ Ξ. Once the demand scenario ξ becomes known, traffic
is routed through a multi-commodity flow with variables fka (ξ).

Let δ+(v) and δ−(v) denote the sets of outgoing and incoming arcs at node v ∈ V,
respectively. The problem can now be formulated as the following linear program.

min
∑
a∈A

caxa (1)

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise
∀v ∈ V, k ∈ K, ξ ∈ Ξ (2)

∑
k∈K

fka (ξ) ≤ ua + xa ∀ξ ∈ Ξ, a ∈ A (3)

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A (4)
xa ≥ 0 ∀a ∈ A (5)

Objective function (1) is to minimize the total cost of capacity expansion subject to flow
conservation constraint (2), while constraint (3) imposes that the amount of flow does not
exceed the sum of existing and added arc capacity.

3.2 RNCEP with Fixed-Charge Costs
We now introduce an extension of the previous model, where a fixed charge occurs if the
capacity of an arc is modified. To this end, let pa be this fixed charge associated with arc
a ∈ A.

We introduce a new variable ha ∈ {0, 1} to denote if the capacity of arc a is modified.
The RNCEP with fixed-charge costs can then be formulated as the following mixed-integer
program:

min
∑
a∈A

(caxa + hapa) (6)

s.t. xa ≤Maha ∀a ∈ A (7)
ha ∈ {0, 1} ∀a ∈ A (8)
Constraints (2)− (5) (9)

Here, Ma for all a are constants that are sufficiently large not to restrict the solution. For
instance, taking any Ma ≥ maxξ∈Ξ

∑
k∈K d

k(ξ) for all a is valid.

3.3 RNCEP with Piecewise-Linear Cost
We further extend the RNCEP by introducing a piecewise-linear cost function. To this end,
we apply the multiple choice model (MCM) as mentioned in the literature review. We assume
that for every arc, there are up to S segments with different slopes in the cost function. Let
us write S = {1, . . . , S}. For every arc a and segment s, let bsa denote the load breakpoint,
with an additionally defined b0a := 0. Let csa denote the cost slope of segment s, and psa its
y-intercept.

ATMOS 2019
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In addition to the variables of RNCEP, we introduce two new sets of auxiliary variables.
Variables hsa are binary variables that select the cost segment where the added capacity
xa falls in. Variables xsa denote the amount of capacity that is added within each cost
segment. This gives the following mixed-integer programming formulation for the RNCEP
with piecewise-linear costs:

min
∑
s∈S

∑
a∈A

(csaxsa + hsap
s
a) (10)

s.t. xa =
∑
s∈S

xsa ∀a ∈ A (11)

bs−1
a hsa ≤ xsa ≤ bsahsa ∀a ∈ A, s ∈ S (12)∑
s∈S

hsa ≤ 1 ∀a ∈ A (13)

xa ≤Ma

∑
s∈S

hsa ∀a ∈ A (14)

xsa ≥ 0 ∀a ∈ A, s ∈ S (15)
hsa ∈ {0, 1} ∀a ∈ A, s ∈ S (16)
Constraints (2)− (5) (17)

4 Experimental Study

We implemented the fixed-charge cost model and the piecewise-linear cost model using
instances from the SNDLib library by [21]. Network parameters characteristics on the four
considered networks from SNDLib are presented in Table 1.

Table 1 Network parameters characteristics (rounded to integers).

Network Janos26 Janos39 Sun27 Node39

|V| 26 39 27 39
|A| 84 122 102 172
|K| 650 1,482 67 1,471
dk (mean±SD) 123±198 69±243 28±16 5±2
ua (mean±SD) 64±0 1,008±0 40±0 160±0
ca (mean±SD) 468±225 313±162 19±10 23±11

Models were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop machine
with 8 GB RAM and Intel Core i5-6500 CPU at 2.50Ghz on 4 Cores. We used a time limit
of 4000s for each problem instance and optimality is achieved once the optimality gap is
below 0.01%.

4.1 Experimental Setup
Both the fixed-charge cost and the piecewise-linear cost models were implemented with
one scenario (single-scenario) and with two scenarios (double-scenario). The base demand
scenario was provided from the SNDLib library, which we randomly modified to generate
additional demand scenarios. The amount of modification is controlled by a parameter
λ, the maximum deviation of modified demand from the base demand. The parameter λ
is chosen to be a fraction of the mean base demand d̂; we consider λ = round(0.3d̂) and



F. Garuba, M. Goerigk, and P. Jacko 5:7

Table 2 Experimental setup for generating 120 problem instances for each network.

Parameters # options Options

Number of scenarios 2 1 (single) / 2 (double)
Scenario variability λ 2 0.3d̂ / 0.6d̂
Fixed-charge factor P 3 0 / 10 / 100
Number of runs 10 —

Table 3 Proportion of instances not solved to optimality within the time limit (rounded to one
decimal).

Network Janos26 Janos39 Sun27 Node39

Total 0.0% 24.2% 35.0% 66.7%

P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 12.5% 100.0%
P = 100 0.0% 72.5% 92.5% 100.0%

Single-scenario 0.0% 15.0% 28.3% 66.7%
Double-scenario 0.0% 33.3% 41.7% 66.7%

λ = 2 · round(0.3d̂), corresponding to small uncertainty and large uncertainty, respectively.
The value is then used as a bound for uniformly generating the modified demands around
the base demand of every arc.

We summarize the experimental setup in Table 2. For each of the four networks, we
consider the single-scenario and the double-scenario case, as well as small and large uncertainty.
Additionally, for fixed-cost models we use three different fixed-charge factors P . These are
used to calculate the fixed charges pa of arc a by setting pa = Pca. With P = 0, we recover
the basic linear cost model without fixed charge. All networks and parameter settings are
run 10 times to reduce variability in the results. In total, this gives 4 · 2 · 2 · 3 · 10 = 480
optimization problem instances that need to be solved for the fixed charge case. For the
piecewise-linear case, we follow the same setup with 4 · 2 · 2 · 10 = 160 instances. Each arc
has three cost segments where the cost of each segment is calculated as ratio of the nominal
arc cost. This gives segment costs as csa = ca · rs where r ∈ {1.00, 0.90, 0.75}.

4.2 Results for RNCEP with Fixed-Charge Cost
4.2.1 Single- and Double-Scenario Results
Table 3 summarizes the results of the 480 problem instances, reporting the proportion
of instances that were not solved to optimality within the time limit. We can see the
optimization performance of problem instances in total, for different values of P , and for
different number of scenarios. This performance measure gives a high-level summary of the
hardness of particular instances. We can conclude that the instances become harder to solve
as P increases, or as the number of scenarios increases.

Other performance metrics are presented in more detail in Table 4 and Table 5, where
each cell gives an average and standard deviation from a sample of 20 problem instances.
Optimality gap refers to the sub-optimality estimated and reported by Gurobi using the
built-in procedure for lower-bounding the objective. Solution time is the time reported by
Gurobi, capped by the time limit. Capacity added is the overall network capacity added on
top of the original capacity (which can be calculated as |A|ua from Table 1).

ATMOS 2019
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Table 4 Single-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.0% 7.7 ±2.9%
P = 100 0.0% 0.3 ±0.6% 5.0 ±2.8% 51.9 ±4.8%

Solution time P = 0 6.5 ±0.5 156.9 ±17.0 0.3 ±0.1 536.4 ±82.2
P = 10 7.4 ±0.6 227.1 ±86.0 201.7 ±201.4 4,000.1 ±0.0
P = 100 10.8 ±2.1 3,120.9 ±1,088.0 3,694.8 ±815.9 4,000.1 ±0.1

Capacity added P = 0 268,698 ±23,970 331,864 ±57,041 3,043 ±271 1,194 ±357
P = 10 270,931 ±23,195 329,330 ±54,751 2,925 ±412 1,204 ±281
P = 100 275,409 ±23,476 321,808 ±53,261 3,652 ±447 1,167 ±357

Table 5 Double-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39

Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 0.1 ±0.2% 11.0 ±1.8%
P = 100 0.0% 1.3 ±0.5% 10.8 ±1.4% 57.1 ±3.3%

Solution time P = 0 88.4 ±25.1 1,285.6 ±349.5 1.2 ±0.2 2,256.6 ±317.9
P = 10 92.2 ±21.0 2,373.9 ±770.5 1,729.0 ±1,418.2 4,000.2 ±0.1
P = 100 189.0 ±57.7 4,000.3 ±0.2 4,000.1 ±0.1 4,000.2 ±0.1

Capacity added P = 0 278,358 ±8,988 363,225 ±26,348 4,399 ±304 1,185 ±154
P = 10 278,031 ±7,857 367,324 ±18,522 4,635 ±329 1,286 ±254
P = 100 282,467 ±9,830 368,547 ±19,887 5,668 ±503 1,236 ±254

Interestingly, network Sun27 shows large variability in solution time, for both single-
scenario and double-scenario settings. While with P = 0 it is the quickest to solve out of
all networks, for larger values of P it is roughly similar to Janos39, despite dealing with a
smaller number of commodities. On the other hand, solution time of Janos26 is affected very
little by different values of P .

Comparing the solution time reported in Table 4 and Table 5, the double-scenario model,
as expected, takes longer to solve to optimality as the goal here is to factor in robustness into
the solution. On average, this double-scenario model resulted in 7.39% additional capacity
across the networks for instances that were solved to optimality. The average increase in
solution time across the instances that were solved to optimality is 828.24%.

We also note that capacity added is highly network dependent. The capacities of Janos26
and Janos39 are expanded dramatically due to the high variability in the demand, which for
some commodities significantly exceeds the original capacity (see Table 1). On the other
hand, the demands in Sun27 and Node39 are small compared to the original capacity, so the
capacity added is relatively small.

Not reported elsewhere is the effect of scenario variability λ: the solution time becomes
smaller if the uncertainty is larger, i.e., on the average for all the networks and parameter
settings, the 0.6d̂ variability results in lower solution times than for the 0.3d̂ variability.
This was also found to be the trend when looking at single networks. This is summarized
in Table 6.
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Overall, it is possible to solve most of the problem instances to optimality within the
time limit, and even most of those not solved to optimality report very small optimality gap.
The only settings that would significantly benefit from an increased time limit are Sun27 at
P = 100 and Node39 at P = 10 and P = 100.

4.2.2 Effect of Number of Scenarios
While the previous discussion focused only on single- and double-scenario instances, it is
also of interest to understand how an increased number of scenarios affects the performance
measures. Considering more scenarios is expected to lead to a solution which in practical
terms guarantees the network ability to accommodate a higher level of demand variation
and provides additional capacity.

To illustrate that, we tested network Janos26 with fixed charge P = 10. We started
with a single-scenario instance, where the base scenario considered reflects the expected
demand (this is the original demand from SNDLib). We then generated and gradually added
additional scenarios by randomly perturbating all the demands of the base scenario within
±λ, in the large uncertainty setting.

For comparison, we also considered the optimistic instance, which is a single-scenario
instance in which the demand is generated by subtracting λ from the expected demand on
every arc. This instance expands the capacity of the network to satisfy only the smallest
demand scenario, and would be almost surely unable to satisfy the realized demand. Finally,
we considered the pessimistic instance, which is a single-scenario instance in which the
demand is generated by adding λ to the expected demand on every arc. This instance
expands the capacity of the network to satisfy all the possible demand scenarios.

The results are presented in Table 7. These results are representative; similar results
were obtained when we replicated the experiment with other randomly generated scenarios.
The key observations are as follows: By gradually expanding the set of scenarios, the cost
(our minimization objective) non-decreases; the added capacity follows a similar trend, but
is not necessarily monotone (cf. 8 vs 9 scenarios); the solution time (reported in seconds
and as a multiple of the expected scenario instance) increases exponentially; expansion
by adding more scenarios approximately follows the law of diminishing returns in both
the cost and added capacity: the increase is highest when expanding from 1 (expected)
scenario to 2 scenarios (which includes the expected scenario and one randomly generated),
with only a minor increase when considering more than 3 scenarios, indicating the value of
considering a robust optimization approach even with few scenarios; the increase in both the
cost and added capacity is dramatic (36.9%) when expanding from 1 (expected) scenario to 2
scenarios (which includes the expected scenario and one randomly generated), indicating that
optimizing the network based on the expected scenario (i.e. on point forecasts) only may be an
inappropriate approach, leading to a large amount of unsatisfied realized demand; optimizing
the network for the pessimistic scenario is very expensive (the increase in both the cost and
added capacity is about 115% compared to the expected scenario), indicating the value of

Table 6 Effect of higher λ on solution time.

Solution Time Single Scenario Double Scenario

λ = 0.3d̂ 527.31 3,010.85
λ = 0.6d̂ 346.62 2,299.23
% Improvement 34.3% 23.6%

ATMOS 2019
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Table 7 Results on Janos26 with fixed-charge cost (P = 10) for different numbers of scenarios.

# Scenarios Cost ∆Cost Added ∆Added Time ∝Time
(in 103) Capacity Capacity (sec.)

1 (optimistic) 83,001 -10.9% 192,610 -9.2% 8 1x

1 (expected) 93,116 — 212,104 — 8 —
2 127,484 36.9% 292,893 38.1% 59 8x
3 129,804 39.4% 298,131 40.6% 376 50x
4 130,265 39.9% 300,426 41.6% 768 102x
5 130,272 39.9% 300,492 41.7% 1,080 143x
6 130,462 40.1% 300,913 41.9% 3,124 413x
7 130,753 40.4% 301,598 42.2% 2,488 329x
8 131,206 40.9% 301,936 42.4% 4,456 589x
9 131,255 41.0% 301,715 42.2% 8,869 1173x

1 (pessimistic) 200,593 115.4% 456,182 115.1% 8 1x

Table 8 Solution results for piecewise-linear cost.

Single-Scenario Sun27 Janos26 Janos39 Node39

Optimality Gap 0.00% 2.90% 10.43% 22.43%
Solution time 653.67 ±640.84 4000.22 ±0.11 4000.22 ±0.06 4000.16 ±0.04
Capacity Added 2,863 ±539 276,172 ±26,036 335,258 ±58,895 1,472 ±574

Double-Scenario

Optimality Gap 1.43% 6.73% 37.44% 77.99%
Solution time 4000.04 ±0.01 4000.21 ±0.23 4000.10 ±0.03 4000.12 ±0.04
Capacity Added 4,380 ±278 296,354 ±11,398 472,889 ±110,491 4,117 ±2,601

considering a robust optimization approach even with few scenarios; optimizing the network
for the optimistic scenario leads to savings (the decrease in both the cost and added capacity
is about 10% compared to the expected scenario), but may not be acceptable in practice if
the consequences of having practically no satisfied realized demand are non-negligible.

These results provide an indication of the ability of our model to become more robust
by including more demand scenarios. We note that Gurobi was able to deal with up to
approximately 200 scenarios for this network without giving an out-of-memory error, however,
it would be unlikely to compute a close-to-optimal solution in a reasonable amount of time.

4.3 Results for RNCEP with Piecewise-Linear Costs
Next we consider the robust network capacity expansion problem with piecewise-linear costs.
Overall, 12.5% of all problem instances were solved to optimality within the time limit, 77.5%
returned a non-optimal solution, and 10% were timed out already during the root relaxation.
None of the double-scenario problem instances reached optimality within the time limit. Only
one of the networks, Sun27, reached optimality and this was for all the problem instances
in the single-scenario case. Two networks, Janos39 and Node39, had instances timing out
under the root relaxation phase.
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Figure 1 Optimality gap for piecewise-linear cost.

Table 8 presents more detailed results of this model for each network. The optimality gap
is further illustrated in Figure 1, indicating that the optimality gap may be acceptable because
of small values and small variability for Sun27 and Janos26 in the single-scenario setting
and for Sun27 in the double-scenario setting. Better solutions can of course be achieved by
increasing the time limit, which would be recommendable in the remaining settings.

The optimality gap provides insight into the increased difficulty of solving these problem
instances, which also translates into longer solution time. It takes at least 512% more time to
solve the double-scenario models compared to the single-scenario using Sun27 network, which
is the easiest setting considering its very low optimality gap of 1.43% for the double-scenario
instances. A further analysis was performed on the solution time using the paired sample
t-Test which indicates no significant difference between solution time returned by 0.3d̂ and
0.6d̂ with a t-statistic of −0.2047 and a p-value 0.8423.

5 Conclusions

In this paper, a robust approach to network capacity expansion with non-linear cost func-
tions was investigated. We developed robust models with fixed-charge costs and with
piecewise-linear costs. They were implemented on four networks taken from the SNDlib,
[21], with results compared to using linear costs. In the experimental setup, a number of
possible parameter configurations was considered, including different demand variability and
fixed-charges.

When further increasing the number of scenarios, we found that results follow a law of
diminishing returns. While objective values and added capacity change little beyond five
scenarios, computation times increase considerably. This is an indicator that already few
scenarios suffice to find solutions that are robust against uncertainty in demand. The next
pursuit will be to further improve the solution time for these models testing a path-based
flow formulation and by developing specialized algorithms based on column generation and
Benders decomposition.
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