Report from Dagstuhl Seminar 19241

25 Years of the Burrows-Wheeler Transform

Edited by
Travis Gagie¹, Giovanni Manzini², Gonzalo Navarro³, and Jens Stoye⁴

¹ Dalhousie University – Halifax, CA, travis.gagie@dal.ca
² University of Eastern Piedmont – Alessandria, IT, giovanni.manzini@uniupo.it
³ University of Chile – Santiago de Chile, CL, gnavarro@dcc.uchile.cl
⁴ Universität Bielefeld, DE, jens.stoye@uni-bielefeld.de

Abstract

Dagstuhl Seminar 19241 (“25 Years of the Burrows-Wheeler Transform”) took place from June 10th to 14th, 2019, and was attended by 45 people from 13 countries and the three fields of Algorithms and Data Structures, Bioinformatics, and Combinatorics on Words. There were four talks and a panel session for each field. Feedback was generally positive and we are confident the seminar fostered interdisciplinary connections and will eventually result in noteworthy joint publications.

Seminar June 10–14, 2019 – http://www.dagstuhl.de/19241

Keywords and phrases Bioinformatics, Burrows-Wheeler Transform, Combinatorics on Words, Data Compression, Data Structures, Indexing, Sequence Alignment

Digital Object Identifier 10.4230/DagRep.9.6.55

1 Executive Summary

Travis Gagie
Giovanni Manzini
Gonzalo Navarro
Jens Stoye

Dagstuhl Seminar 19241 marked the 25th anniversary of the publication of the Burrows-Wheeler Transform (BWT), which has had a huge impact on the fields of data compression, combinatorics on words, compact data structures, and bioinformatics. The 10th anniversary in 2004 was marked by a workshop at the DIMACS Center at Rutgers (http://archive.dimaes.rutgers.edu/Workshops/BWT) organized by Paolo Ferragina, Giovanni and S. Muthukrishnan, and it is exciting to see how far we have come. In the past 15 years, interest in the BWT has shifted from data compression to compact data structures and bioinformatics, particularly indexing for DNA read alignment, but seven of the 33 participants of that workshop (including Giovanni) also attended this seminar. Unfortunately, Professor Gørtz fell ill at the last minute and emailed us on June 11th to say she couldn’t attend, but everyone else on the
The final list of invitees was present for at least some of the seminar (although not everyone made it into the photo). In total there were 45 people (listed at the end of this report) from 13 countries, including ten women, six junior researchers and two researchers from industry. By happy coincidence, the seminar started the day after Gonzalo’s 50th birthday, so we were able to celebrate that as well. We thank Professor Sadakane for the photos shown in Figures 1 and 2.

The schedule, shown in Figure 3, featured an introduction, 12 talks, three panel sessions and a closing. The talks were all timely and reflected the active and dynamic research being carried out on the BWT:

- Giovanni’s introduction was a more in-depth version of his invited talk from DCC ’19;
- Veli Mäkinen surveyed pan-genomic indexing, including work published in *BMC Genomics* last year;
- Richard Durbin surveyed results based on the positional BWT, published in *Bioinformatics* in 2014;
- Jouni Sirén presented work included in a *Nature Biotechnology* article last year;
- Christina Boucher surveyed compact data structures for de Bruijn graphs, including work from an ISMB/ECCB 2019 paper;
- Gonzalo Navarro reviewed BWT-based indexes, including work from a SODA ’18 paper;
- Sandip Sinha presented work from a STOC ’19 paper;
- Dominik Kempa presented work from another STOC ’19 paper;
- Sharma Thankachan presented work from an ESA ’19 paper;
- Nicola Prezza presented work from a STOC ’18 paper;
- Marinella Sciortino gave a version of her invited lecture for IWOCA ’19 a month later;
- Giovanna Rosone presented results about two extensions of the BWT, including work from a WABI ’18 paper, now published in *Algorithms for Molecular Biology*;
- Dominik Köppl presented work from a CPM ’19 paper.

We later received all the abstracts but one.
Figure 3

The original seminar schedule. Inge Li Gørtz was unable to attend and so Tatiana Starikovskaya chaired the *Algorithms and Data Structures* panel. The talks and panel on *Bioinformatics* were held on the first day and those on *Algorithms and Data Structures* on the second day to accommodate participants’ schedules.

<table>
<thead>
<tr>
<th>Time</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30</td>
<td>Breakfast</td>
<td>Breakfast</td>
<td>Breakfast</td>
<td>Breakfast</td>
<td>Breakfast</td>
</tr>
<tr>
<td>09:00</td>
<td>INTRO</td>
<td>ALG TALK 1</td>
<td>CoW TALK 1</td>
<td>Work...</td>
<td></td>
</tr>
<tr>
<td>09:45</td>
<td>BIO TALK 1</td>
<td>ALG TALK 2</td>
<td>CoW TALK 2</td>
<td>Work...</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>BIO TALK 2</td>
<td>ALG TALK 3</td>
<td>CoW TALK 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td>BIO TALK 3</td>
<td>ALG TALK 4</td>
<td>CoW TALK 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td></td>
<td>LUNCH</td>
<td>LUNCH</td>
<td>LUNCH</td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td>BIO TALK 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>BIO PANEL</td>
<td>ALG PANEL</td>
<td>CoW PANEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td>WORK!</td>
<td>CLOSING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>CAKE</td>
<td></td>
<td>CAKE</td>
<td>CAKE</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>WORK?</td>
<td>WORK!!</td>
<td>WORK!!!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>DINNER (buffet)</td>
<td>DINNER</td>
<td>DINNER</td>
<td>DINNER</td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>CHEESE?</td>
<td>CHEESE</td>
<td>CHEESE</td>
<td>CHEESE</td>
<td></td>
</tr>
</tbody>
</table>

- **INTRO**: Giovanni
- **BIO TALK 1**: Veli (Pan-genomic alignment)
- **BIO TALK 2**: Richard (PBWT)
- **BIO TALK 3**: Jouni (GBWT)
- **BIO TALK 4**: Christina (de Bruijn graphs)
- **ALG TALK 1**: Gonzalo (r-index)
- **ALG TALK 2**: Sandip (Local decodability)
- **ALG TALK 3**: Dominik (BWT construction)
- **ALG TALK 4**: Sharma (Wheeler graphs)
- **CoW TALK 1**: Nicola (String attractors)
- **CoW TALK 2**: Marinella (Combinatorial properties)
- **CoW TALK 3**: Giovanna (eBWT / BWT similarity)
- **CoW TALK 4**: Dominik (Bijective BWT)
- **CLOSING**: Jens
2 Table of Contents

Executive Summary
Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Jens Stoye 55

Overview of Talks
25 Years of Burrows-Wheeler Transform: A review
Giovanni Manzini ... 59
Scaling pan-genomic alignment using founders
Veli Mäkinen ... 60
Genome Graphs and BWT-based Data Structures
Jouni Sirén ... 60
BWT Meets the de Bruijn Graph: Results and Challenges
Christina Boucher ... 61
Text Indexing with the BWT
Gonzalo Navarro ... 61
Local Decodability of the Burrows-Wheeler Transform
Sandip Sinha ... 61
BWT Construction: History, Techniques, State of the Art, Open Problems
Dominik Kempa ... 62
On the Hardness and Inapproximability of Recognizing Wheeler Graphs
Sharma V. Thankachan ... 63
String Attractors
Nicola Prezza, Travis Gagie, Dominik Kempa, and Gonzalo Navarro 64
Combinatorial Properties of BWT
Marinella Sciortino ... 64
BWT / eBWT similarity
Giovanna Rosone ... 65
Searching Patterns in the Bijective BWT
Dominik Köppl ... 65

Motivation (from proposal) .. 66

Feedback ... 66

Open Problems ... 67

Participants ... 68
3 Overview of Talks

Apart from the talks below, there were impromptu presentations by Jackie Daykin on “Order-based Burrows-Wheeler Transforms”, by Enno Ohlebusch on “An improved encoding of genetic variation in a Burrows-Wheeler transform”, by Kunsoo Park on “Comparing Pan-Genomic Indexes”. Slides from all of these and introductory slides from the Combinatorics on Words panel (submitted by Sabrina Mantaci) are available on the materials page.

3.1 25 Years of Burrows-Wheeler Transform: A review

Giovanni Manzini (University of Eastern Piedmont – Alessandria, IT)

License Creative Commons BY 3.0 Unported license © Giovanni Manzini

Joint work of Giovanni Manzini, Paolo Ferragina, Travis Gagie, Raffaele Giancarlo, Marinella Sciortino, Jouni Sirén

URL https://doi.org/10.1016/j.tcs.2017.06.016

To establish a common ground, in this introductory talk we review the main properties of the BWT with respect to data compression and text indexing.

The “Block sorting data compression algorithm” by Mike Burrows and David Wheeler [1] was based on a data transformation, now called the BWT, designed “to make redundancy in the input more accessible”. While this is obvious at the intuitive level, it took ten years to formalize this notion in terms of empirical entropy. In [2] it was proven that the Burrows-Wheeler transform can be seen as a “compression booster”, that is a tool for transforming any order-0 encoder into a much more effective order-k encoder, and that this result holds simultaneously for every $k > 0$.

Starting from the year 2000, several researchers [3, 5, 6] observed that, because of the relationship between the BWT and the Suffix Array, the former can be used as a sort of full text index, possibly compressed if one takes advantage of the “boosting” properties of the BWT. Over the years, these ideas have been extended to design compressed data structures to index other discrete structures such as trees, graphs, automata, alignments, and so on.

We introduced the notion of Wheeler Graph that generalizes the BWT and provides a unified view of many of these extensions [4]. We show that pattern matching problems inside many of these discrete structures can be modeled using Nondeterministic Finite Automata which have the additional property of being Wheeler Graphs. We also show that we can compactly represent and navigate Wheeler Graphs using the well-known and highly optimized rank and select operations on linear arrays. Although not every BWT-related data structure fits in our framework, we believe our unifying view can help researchers develop new BWT variants and new indexing data structures.

References

3.2 Scaling pan-genomic alignment using founders

Veli Mäkinen (University of Helsinki, FI)

The talk covers the PanVC framework for pan-genomic variant calling through multiple reference indexing for read alignment [1], as well as a lossy compression of multiple references into founders [2], which makes the whole framework scalable.

References

3.3 Genome Graphs and BWT-based Data Structures

Jouni Sirén (University of California – Santa Cruz, US)

Joint work of Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict Paten, Richard Durbin

URL http://dx.doi.org/10.4230/LIPIcs.WABI.2018.4

A reference sequence may represent a new dataset poorly if the sequenced individual diverges substantially at some location. Mapping reads to such a reference can introduce reference bias into the subsequent analysis. Genome graphs help to avoid the bias by including genetic variation in the reference. Although each path in the graph is a potential haplotype, most paths are unlikely recombinations of true haplotypes.

In this talk, I will show how we can use BWT-based methods to index genome graphs. We transform the graph into an equivalent Wheeler graph, or approximate it with Wheeler graphs when the equivalent Wheeler graph is too large or does not exist. I will also introduce the GBWT as a fast and space-efficient way of storing large collections of haplotypes as paths over the genome graph.
3.4 BWT Meets the de Bruijn Graph: Results and Challenges

Christina Boucher (University of Florida – Gainesville, US)

License Creative Commons BY 3.0 Unported license
© Christina Boucher

The money and time needed to sequence a genome have decreased remarkably in the past decade. With this decrease has come an increase in the number and rate at which sequence data is collected for public sequencing projects. This led to the existence of GenomeTrakr, which is a large public effort to use genome sequencing for surveillance and detection of outbreaks of foodborne illnesses. This effort includes over 50,000 samples, spanning several species available through this initiative, a number that continues to rise as datasets are continually added. Unfortunately, analysis of this dataset has been limited due to its size. In this talk, I will describe our method for constructing the colored de Bruijn graph for large datasets that is based on partitioning the data into smaller datasets, building the colored de Bruijn graph using a FM-index based representation, and succinctly merging these representations to build a single graph. Finally, I will show its capability of building a colored de Bruijn graph for 16,000 strains from GenomeTrakr in a manner that allows it to be updated. Lastly, I conclude by outlining some opportunities for further study in this area.

3.5 Text Indexing with the BWT

Gonzalo Navarro (University of Chile – Santiago de Chile, CL)

License Creative Commons BY 3.0 Unported license
© Gonzalo Navarro

URL https://doi.org/10.1109/SFCS.2000.892127

The talk covers the history and functioning of the FM-index, since its first version (Ferragina and Manzini, 2000) to the latest one (Gagie, Navarro, and Prezza, 2018) aimed at repetitive datasets.

3.6 Local Decodability of the Burrows-Wheeler Transform

Sandip Sinha (Columbia University – New York, US)

License Creative Commons BY 3.0 Unported license
© Sandip Sinha

Joint work of Sandip Sinha, Omri Weinstein
URL https://doi.org/10.1145/3313276.3316317

The Burrows-Wheeler Transform (BWT) is among the most influential discoveries in text compression and DNA storage. It is a reversible preprocessing step that rearranges an n-letter string into runs of identical characters (by exploiting context regularities), resulting in highly compressible strings, and is the basis of the bzip compression program. Alas, the decoding process of BWT is inherently sequential and requires $\Omega(n)$ time even to retrieve a single character.
We study the succinct data structure problem of locally decoding short substrings of a given text under its compressed BWT, i.e., with small additive redundancy r over the Move-To-Front (bzip) compression. The celebrated BWT-based FM-index (FOCS ’00), as well as other related literature, yield a trade-off of $r = \tilde{O}(n/\sqrt{t})$ bits, when a single character is to be decoded in $O(t)$ time. We give a near-quadratic improvement $r = \tilde{O}(n \log(t)/t)$. As a by-product, we obtain an exponential (in t) improvement on the redundancy of the FM-index for counting pattern-matches on compressed text. In the interesting regime where the text compresses to $o(n)$ (say, $n/poly\log(n)$) bits, these results provide an $\exp(t)$ overall space reduction. For the local decoding problem of BWT, we also prove an $\Omega(n/t^2)$ cell-probe lower bound for “symmetric” data structures.

We achieve our main result by designing a compressed partial-sums (Rank) data structure over BWT. The key component is a locally-decodable Move-to-Front (MTF) code: with only $O(1)$ extra bits per block of length $n^{\Omega(1)}$, the decoding time of a single character can be decreased from $\Omega(n)$ to $O(\log n)$. This result is of independent interest in algorithmic information theory.

3.7 BWT Construction: History, Techniques, State of the Art, Open Problems

Dominik Kempa (University of Warwick – Coventry, GB)

License © Creative Commons BY 3.0 Unported license
© Dominik Kempa

Joint work of Dominik Kempa, Tomasz Kociumaka
URL https://doi.org/10.1145/3313276.3316368

Burrows-Wheeler transform (BWT) is an invertible text transformation that, given a text T of length n, permutes its symbols according to the lexicographic order of suffixes of T. BWT is one of the most heavily studied algorithms in data compression with numerous applications in indexing, sequence analysis, and bioinformatics. Its construction is a bottleneck in many scenarios, and settling the complexity of this task is one of the most important unsolved problems in sequence analysis that has remained open for 25 years. In this talk, I will review the recent progress made for the problem of BWT construction [1, 2] as well as summarize the existing algorithms and outline the main challenges lying ahead.

References

3.8 On the Hardness and Inapproximability of Recognizing Wheeler Graphs

Sharma V. Thankachan (University of Central Florida – Orlando, US)

License Creative Commons BY 3.0 Unported license
© Sharma V. Thankachan

Joint work of Daniel Gibney, Sharma V. Thankachan

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2019.51

In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present:

The problem of recognizing whether a given graph \(G = (V, E) \) is a Wheeler graph is NP-complete for any edge label alphabet of size \(\sigma \geq 2 \), even when \(G \) is a DAG. This holds even on a restricted, subset of graphs called \(d \)-NFA’s for \(d \geq 5 \). This is in contrast to recent results demonstrating the problem can be solved in polynomial time for \(d \)-NFA’s where \(d \leq 2 \). We also show the recognition problem can be solved in linear time for \(\sigma = 1 \);

There exists an \(2^{e \log \sigma + O(n+e)} \) time exact algorithm where \(n = |V| \) and \(e = |E| \). This algorithm relies on graph isomorphism being computable in strictly sub-exponential time;

We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when \(G \) is a DAG, implying there exists a constant \(C \geq 1 \) for which there is no \(C \)-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all \(C \geq 1 \), it is NP-hard to find a \(C \)-approximation;

We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for \(\sigma = O(1) \);

The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial time solvable, raising the open question of which parameters determine this problem’s difficulty.
3.9 String Attractors

Nicola Prezza (University of Pisa, IT), Travis Gagie (Universidad Diego Portales, CL), Dominik Kempa (University of Warwick – Coventry, GB), and Gonzalo Navarro (University of Chile – Santiago de Chile, CL)

License Creative Commons BY 3.0 Unported license
© Nicola Prezza, Travis Gagie, Dominik Kempa, and Gonzalo Navarro

URL https://doi.org/10.1145/3188745.3188814

In this talk I show connections between the Burrows-Wheeler transform and popular compressors such as LZ77 and grammars. The first connection is that these compressors can be interpreted as approximation algorithms for computing a new combinatorial object: the string attractor [1]. A string attractor is a subset of the text’s positions such that each distinct text substring has at least one occurrence crossing at least one element in the set. It turns out that most dictionary compressors induce string attractors whose cardinalities are bounded by their outputs’ sizes, and that one can build a dictionary-compressed representation from a string attractor. It follows that these new objects allow one to prove new relations between the sizes of dictionary compressors, and to design universal compressed data structures. The second connection is through bidirectional parsings. A bidirectional parse is a generalization of LZ77 where phrases’ sources are not forced to precede their destination. I will show that the BWT induces a bidirectional parse with r phrases, where r is the number of equal-letter runs in the BWT. Unlike LZ77, this parse enjoys new fascinating properties that allow one to build an optimal-time index on top of it [2].

References

3.10 Combinatorial Properties of BWT

Marinella Sciortino (University of Palermo, IT)

License Creative Commons BY 3.0 Unported license
© Marinella Sciortino

Although the BWT has been introduced in Data Compression, over the years it has found many applications in several different contexts. The outstanding versatility and efficacy of the BWT is based on some mathematical and combinatorial properties, i.e. its efficient reversibility and the “clustering effect” on the output. In this talk such properties are explored, highlighting the connections with well-known objects in Combinatorics of words, such as Lyndon words and Sturmian words. Furthermore, studying how the number of equal-letter runs varies after the BWT is applied, allows us to characterize infinite families of words based on the clustering effect produced by BWT. In such cases these characterizations are connected to still-open mathematical conjectures. Finally, some variants of the BWT
are described. The first one, denoted eBWT, is defined on multisets of strings and allows to establish a bijection between the multiset of conjugacy classes of strings and all the strings on a given alphabet, with interesting theoretical and applicative implications. The second variant, denoted ABWT, uses a different order (called alternating order) to sort the cyclic rotations of a string. It is interesting to note that the ABWT preserves many combinatorial and mathematical properties of the BWT and it can be used as a compressed index in the same way as the BWT.

3.11 BWT / eBWT similarity

Giovanna Rosone (University of Pisa, IT)

License Creative Commons BY 3.0 Unported license © Giovanna Rosone

Joint work of Giovanna Rosone, Veronica Guerrini, Sabrina Mantaci, Marinella Sciortino, Antonio Restivo

URL https://doi.org/10.1007/s00224-007-9078-6

Sequence comparison has become a very essential tool in modern molecular biology. In fact, in biomolecular sequences high similarity usually implies significant functional or structural similarity. Traditional approaches use techniques that are based on sequence alignment able to measure character level differences. Here, we describe some similarity measures, alignment-free, based on the Burrows-Wheeler transform with several application in bioinformatics, such as the metagenomic problem.

3.12 Searching Patterns in the Bijective BWT

Dominik Köppl (Kyushu University – Fukuoka, JP)

License Creative Commons BY 3.0 Unported license © Dominik Köppl

Joint work of Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, Marcin Piatkowski

URL http://dx.doi.org/10.4230/LIPIcs.CPM.2019.17

We present an index data structure for the bijective Burrows-Wheeler transform [1]. The index data structure is based on the FM index [2]. Like the FM index, it reports the suffix array interval of all pattern occurrences by means of backward searches.

References

4 Motivation (from proposal)

When it was introduced in a technical report in May 1994, no one could have foreseen the impact the Burrows-Wheeler Transform (BWT) would have far beyond the field of data compression for which it was originally intended. Of course it first made a significant impact on compression, both in theory and in practice (e.g., as the basis for bzip2). New horizons opened up in 2000 with the introduction of the FM-index, a compressed suffix array based on the BWT. Among other applications, in the next decade FM-indexes became the heart of the DNA aligners such as Bowtie, BWA and SOAP 2 that helped pave the way for the genomics revolution.

Generalizations of BWT to labelled trees, de Bruijn graphs, automata, haplotype sequences and genomic reference graphs have kept the exchange of ideas lively between researchers in algorithms and data structures, bioinformatics, combinatorics on words and information retrieval. Burrows and Wheeler’s original technical report is still cited hundreds of times every year, subsequent papers are cited thousands of times, and new results about or using the BWT appear in the top conferences and journals.

By now, 25 years since its publication, probably no one person knows all the results that have been proven about the BWT, but we hope the expertise gathered together at this Dagstuhl Seminar will make progress on the following topics, among others:

FM-indexes for genomic databases: FM-indexes shine for indexing one or a few genomes, but they have not scaled well to indexing the genomic databases that have resulted from high-throughput sequencing technologies. An important problem has been that the suffix array samples used to locate occurrences of patterns must be fairly large or locating becomes very slow. Very recently, a way was discovered to greatly compress also the suffix array sample for repetitive texts, opening the door to indexing thousands of genomes. We expect this seminar will lead to a fuller understanding of this advance and how it can be applied in practice. Another challenge has been beating run-length compression of genomic databases’ BWTs, by identifying additional structure.

More generalizations of the BWT: Many BWT researchers have heard of the generalizations to trees and graphs mentioned above, but it seems few except specialists in algorithms and data structures know about its recent extension to indexed parameterized and order-preserving pattern matching, few except specialists in combinatorics on words know about the alternating BWT, and few except bioinformaticians know about the positional BWT – but each of these may have applications in the other areas. Also, a partially unifying framework has recently been proposed, but there are still many open problems.

New challenges in bioinformatics: Papers on the BWT are published in many venues and no single conference brings together all the experts from algorithms and data structures, combinatorics on words, and theoretical and applied bioinformatics. This disconnect between the areas hurts us all because it prevents knowledge being shared efficiently. The BWT has recently been applied to some surprising bioinformatics problems, such as building ancestral recombination graphs and optical read mapping, and we expect other possibilities will emerge from interdisciplinary discussions.

5 Feedback

All of the 19 respondents to the survey said they would definitely attend another Dagstuhl seminar (5, from 1 to 5) and the median rating of the scientific quality was 10 out of 11. One person was neutral about the seminar inspiring new ideas for work, research or teaching; four
agreed it did; and 13 agreed completely (and we do not know what the last person thought). Four people were neutral about it inspiring joint projects or publications; nine agreed it did; and six agreed completely. Two people disagreed that it led to insights from neighbouring fields; two were neutral; nine agreed; and five agreed completely. One person disagreed that it identified new research directions; four people were neutral; seven people agreed; and seven people agreed completely. The responses to the other questions were similar. The comments were generally positive, with people liking the mix of fields; the organization of the panels could have been improved, although they still offered some valuable insights and stimulated promising discussions.

6 Open Problems

Several general open problems were posed – e.g., generalizing the BWT to even more data types, merging BWTs of other data types (and, most generally, Wheeler graphs), improving the compression of BWT-based indexes for DNA readsets, applying current theory to practice – and some specific ones. Sharma Thankachan posed the problem of determining the degree of non-determinism that makes Wheeler graph recognition hard: it is currently known to take polytime when each node has at most two outgoing edges labelled with the same character, and it is NP-complete when nodes can have five outgoing edges labelled with the same character. Jackie Daykin asked about enhancing BWT performance with alphabet reordering (an issue about which Sharma now has preliminary results). Dominik Köppl posted a one-page description of an open problem (“Can we compute the Bijective BWT in linear time?”) to the materials page.
Participants

- Jarno Alanko
 University of Helsinki, FI
- Hideo Bannai
 Kyushu University –
 Fukuoka, JP
- Christina Boucher
 University of Florida –
 Gainesville, US
- Paola Bonizzoni
 University of Milan-Bicocca, IT
- Dominik Kempa
 University of Warwick –
 Coventry, GB
- Tomasz Kociumaka
 Bar-Ilan University –
 Ramat Gan, IL
- Dominik Köppl
 Kyushu University –
 Fukuoka, JP
- Ben Langmead
 Johns Hopkins University –
 Baltimore, US
- Zuzsanna Liptak
 University of Verona, IT
- Veli Mäkinen
 University of Helsinki, FI
- Sabrina Mantaci
 University of Palermo, IT
- Giovanni Manzini
 University of Eastern Piedmont –
 Alessandria, IT
- Ian Munro
 University of Waterloo, CA
- Gene Myers
 MPI – Dresden, DE
- Gonzalo Navarro
 University of Chile –
 Santiago de Chile, CL
- Yakov Nekrich
 University of Waterloo, CA
- Enno Ohlebusch
 Universität Ulm, DE
- Kunsoo Park
 Seoul National University, KR
- Nicola Prezza
 University of Pisa, IT
- Knut Reinert
 FU Berlin, DE
- Giovanna Rosone
 University of Pisa, IT
- Kunihiko Sadakane
 University of Tokyo, JP
- Leena Salmela
 University of Helsinki, FI
- Marinella Sciortino
 University of Palermo, IT
- Rahul Shah
 Louisiana State University –
 Baton Rouge, US
- Sandip Sinha
 Columbia University –
 New York, US
- Jouni Sirén
 University of California –
 Santa Cruz, US
- Tatiana Starikovskaya
 ENS – Paris, FR
- Jens Stoye
 Universität Bielefeld, DE
- Sharma V. Thankachan
 University of Central Florida –
 Orlando, US
- Rossano Venturini
 University of Pisa, IT