
Report from Dagstuhl Seminar 16172

Machine Learning for Dynamic Software Analysis:
Potentials and Limits
Edited by
Amel Bennaceur1, Dimitra Giannakopoulou2, Reiner Hähnle3, and
Karl Meinke4

1 The Open University – Milton Keynes, GB, amel.bennaceur@open.ac.uk
2 NASA – Moffett Field, US, dimitra.Giannakopoulou@nasa.gov
3 TU Darmstadt, DE, haehnle@cs.tu-darmstadt.de
4 KTH Royal Institute of Technology – Stockholm, SE, karlm@kth.se

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16172 “Machine
Learning for Dynamic Software Analysis: Potentials and Limits”. Machine learning is a powerful
paradigm for software analysis that provides novel approaches to automating the generation of
models and other essential artefacts. This Dagstuhl Seminar brought together top researchers
active in the fields of machine learning and software analysis to have a better understanding
of the synergies between these fields and suggest new directions and collaborations for future
research.

Seminar April 24–27, 2016 – http://www.dagstuhl.de/16172
1998 ACM Subject Classification D.2 Software Engineering, D.2.4 Software/Program Verifica-

tion, I.2 Artificial Intelligence, I.2.6 Learning
Keywords and phrases Machine learning, Automata learning, Software analysis, Dynamic ana-

lysis, Testing, Model extraction, Systems integration
Digital Object Identifier 10.4230/DagRep.6.4.161

1 Executive Summary

Amel Bennaceur
Reiner Hähnle
Karl Meinke

License Creative Commons BY 3.0 Unported license
© Amel Bennaceur, Reiner Hähnle, and Karl Meinke

Machine learning of software artefacts is an emerging area of interaction between the machine
learning (ML) and software analysis (SA) communities. Increased productivity in software
engineering hinges on the creation of new adaptive, scalable tools that can analyse large
and continuously changing software systems. For example: agile software development using
continuous integration and delivery can require new documentation models, static analyses,
proofs and tests of millions of lines of code every 24 hours. These needs are being addressed
by new SA techniques based on machine learning, such as learning-based software testing,
invariant generation or code synthesis.

Machine learning is a powerful paradigm for SA that provides novel approaches to
automating the generation of models and other essential artefacts. However, the ML and SA
communities are traditionally separate, each with its own agenda. This Dagstuhl Seminar

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Machine Learning for Dynamic Software Analysis: Potentials and Limits, Dagstuhl Reports, Vol. 6, Issue 4, pp.
161–173
Editors: Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16172
http://dx.doi.org/10.4230/DagRep.6.4.161
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

162 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

brought together top researchers active in these two fields who can present the state of the
art, and suggest new directions and collaborations for future research. We, the organisers,
feel strongly that both communities have much to learn from each other, and the seminar
focused strongly on fostering a spirit of collaboration.

The first day was dedicated to mutual education through a series of tutorials by leading
researchers in both ML and SA to familiarise everyone with the terminology, research
methodologies, and main approach of each community. The second day was dedicated to
brainstorming and focused discussion in small groups, each of which supported by one of the
organisers acting as a facilitator. At the end of the day a plenary session was held for each
group to share a summary of their discussions. The participants also reflected and compared
their findings. The morning of the third day was dedicated to the integration of the groups
and further planning.

This report presents an overview of the talks given at the seminar and summaries of the
discussions of the participants.

Acknowledgements. The organisers would like to express their gratitude to the participants
and the Schloss Dagstuhl team for a productive and exciting seminar.

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 163

2 Table of Contents

Executive Summary
Amel Bennaceur, Reiner Hähnle, and Karl Meinke 161

Overview of Talks
Machine Learning for Emergent Middleware
Amel Bennaceur . 164

Learning Register Automata Models
Falk Howar . 164

Static (Software) Analysis
Reiner Hähnle . 164

Learning-based Testing: Recent Progress and Future Prospects
Karl Meinke . 165

Towards Automata Learning in Practice
Bernhard Steffen . 165

Learning State Machines
Sicco Verwer . 166

Working groups
Different Kinds of Models
Andreas Abel, Amel Bennaceur, Roland Groz, Falk Howar, Frits Vaandrager, Sicco
Verwer, and Neil Walkinshaw . 166

Combining White-Box and Glass-Box Analysis
Falk Howar, Andreas Abel, Pavol Bielik, Radu Grosu, Roland Groz, Reiner Hähnle,
Bengt Jonsson, Mohammad Reza Mousavi, Zvonimir Rakamaric, Alessandra Russo,
Sicco Verwer, and Andrzej Wasowski . 167

Machine learning for System Composition
Falk Howar, Amel Bennaceur, Bengt Jonsson, Alessandra Russo, Sicco Verwer, and
Andrzej Wasowski . 168

Combination of Static Analysis and Learning
Bernhard Steffen, Pavol Bielik, Radu Grosu, Reiner Hähnle, Bengt Jonsson, Mo-
hammad Reza Mousavi, Daniel Neider, and Zvonimir Rakamaric 169

Benchmark Building and Sharing
Frits Vaandrager, Dalal Alrajeh, Amel Bennaceur, Roland Groz, Karl Meinke,
Daniel Neider, Bernhard Steffen, and Neil Walkinshaw 170

Learning and Testing
Neil Walkinshaw, Andreas Abel, Dalal Alrajeh, Pavol Bielik, Roland Groz, Reiner
Hähnle, Karl Meinke, Mohammad Reza Mousavi, Daniel Neider, Zvonimir Rakamaric,
Bernhard Steffen, and Frits Vaandrager . 171

Participants . 173

16172

164 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

3 Overview of Talks

3.1 Machine Learning for Emergent Middleware
Amel Bennaceur (The Open University – Milton Keynes, GB)

License Creative Commons BY 3.0 Unported license
© Amel Bennaceur

Highly dynamic and heterogeneous distributed systems are challenging today’s middleware
technologies. Existing middleware paradigms are unable to deliver on their most central
promise, which is offering interoperability. In this talk, I argue for the need to dynamically
synthesise distributed system infrastructures accord- ing to the current operating environment,
thereby generating “Emergent Middleware” to mediate interactions among heterogeneous
networked systems that interact in an ad hoc way. I will explain the overall architecture
underlying Emergent Middleware, and in particular focuses on the key role of learning in
supporting such a process, spanning statistical learning to infer the semantics of networked
system functions and automata learning to extract the related behaviours of networked
systems.

3.2 Learning Register Automata Models
Falk Howar (IPSSE – Goslar, DE)

License Creative Commons BY 3.0 Unported license
© Falk Howar

Learning algorithms for register automata infer models with parameterized actions, symbolic
guards, and memory. In this talk, we give a brief overview of how active automata learning
has been extended over the past decade to infer such richer models. We focus on one line
of work that is based on a generalized Myhill-Nerode theorem for data languages and the
inference of symbolic decision trees from test cases. We present some key insights and open
questions from this line of work and compare it to other approaches that tackle the same
problem.

3.3 Static (Software) Analysis
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

We give a brief introduction into the field of static analysis: definition, scope, techniques,
challenges, trends. We also juxtapose static analysis of software with dynamic based on
learning. We compare their relative strengths and weaknesses and try to work out where the
opportunities for their possible combination lie.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 165

3.4 Learning-based Testing: Recent Progress and Future Prospects
Karl Meinke (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Karl Meinke

We present a survey of recent progress in the area of learning-based testing (LBT). The
emphasis is primarily on fundamental concepts and theoretical principles, rather than applic-
ations and case studies. After surveying the basic principles and a concrete implementation
of the approach, we describe recent directions in research such as: quantifying the hardness
of learning problems, over-approximation methods for learning, and quantifying the power of
model checker generated test cases. The common theme underlying these research directions
is seen to be metrics for model convergence. Such metrics enable a precise, general and
quantitative approach to both speed of learning and test coverage. Moreover, quantitative
approaches to black-box test coverage serve to distinguish LBT from alternative approaches
such as random and search-based testing. We conclude by outlining some prospects for future
research.

3.5 Towards Automata Learning in Practice
Bernhard Steffen (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Bernhard Steffen

In the last decade automata learning has attracted practical attention in software engineering
e.g. as a means to lower the hurdle of so-called model-based testing, by overcoming the
problem of the required a priori models, or as a way to mine runnable (legacy) software
for behavioural specifications. In order to achieve true practicality, automata learning has
1) to increase scalability, 2) to move from its original theoretical roots, which focused on
standard finite state machines to more expressive formalisms, and finally 3) to establish
notions of quality assurance. Concerning 1) and 3), the TTT algorithm [1, 2] is promising,
as it provides a scalable solution for dealing with extremely long counter examples, which
are characteristic for the so-called life-long learning paradigm. Rather than making explicit
quality statements, this paradigm establishes a continuous improvement cycle, and therefore
an approach to quality assurance adequate, in particular, for agile software development. 2)
has been addressed e.g. via extensions to Register Automata [3] and extended finite State
Machines [4] (cf. the contributions of Falk Howar to the seminar). The Open-Sources Learnlib
[5] aims at making all these algorithms available to the public.

References
1 Malte Isberner, Falk Howar, Bernhard Steffen: The TTT Algorithm: A Redundancy-Free

Approach to Active Automata Learning. RV 2014:307–322
2 Malte Isberner Foundations of active Automata Learning: an algorithmic perspective (PhD

thesis, Dortmund, 2015)
3 Malte Isberner, Falk Howar, Bernhard Steffen: Learning register automata: from languages

to program structures. Machine Learning 96(1–2):65–98 (2014)
4 Sofia Cassel, Falk Howar, Bengt Jonsson, Bernhard Steffen: Active learning for extended

finite state machines. Formal Asp. Comput. 28(2):233–263 (2016)
5 Malte Isberner, Falk Howar, Bernhard Steffen: The Open-Source LearnLib – A Framework

for Active Automata Learning. CAV (1) 2015:487–495

16172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

166 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

3.6 Learning State Machines
Sicco Verwer (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Sicco Verwer

This tutorial is dedicated to learning complex state machines (including timing and para-
meters), using learning for more than just prediction (for instance model checking), and the
power of search methods (using SAT-solvers and Mixed Integer Programming) in machine
learning.

4 Working groups

4.1 Different Kinds of Models
Andreas Abel (Universität des Saarlandes – Saarbrücken, DE), Amel Bennaceur (The Open
University – Milton Keynes, GB), Roland Groz (LIG – Grenoble, FR), Falk Howar (IPSSE –
Goslar, DE), Frits Vaandrager (Radboud University Nijmegen, NL), Sicco Verwer (TU Delft,
NL), and Neil Walkinshaw (University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Andreas Abel, Amel Bennaceur, Roland Groz, Falk Howar, Frits Vaandrager, Sicco Verwer, and
Neil Walkinshaw

In this break-out session we discussed which models should we target for learning: what kind
of models should we learn, and in particular what are the challenges for learning extended
finite state models.

Since all participants in the group were dealing with state based models, we mostly
discussed the issues related to this type of model, although we acknowledged that logic
based models, in particular rule-based models, are just as worthy of interest for software
engineering.

The type of mode may depend on the context in which the learning is done, the assumptions
on what is available for learning (do we have negative as well as positive samples, do we have
an oracle, can we reset or checkpoint a system ?) as well as the intended use of the models:
is the model meant for testing, for static analysis, for reverse engineering or documenting etc.

Regarding the flavours of state models that can be learnt, we reckoned that many different
kinds of models are already supported: Mealy machines and DFA are the most common,
but we also have Moore machines, register automata, combination with rule based systems,
hybrid automata. We could also consider LTS, IOTS, timed models. It is also interesting in
some contexts to learn non-deterministic models of deterministic systems, and similarly to
learn stochastic models. The main frontier is about what kind of extended state machine
models could we learn, more powerful than register automata. Another so far not addressed
issue is that of concurrency models, for which e.g. Petri Nets could be a target.

The major challenge for model learning in software analysis is about learning parametrised
actions and associated data relations. We reckon that register automata are still too limited,
we need richer models. At the same time, it is important to be able to identify relevant
abstractions from data. Typically, being able to extract a parametrised model of actions with
the relevant parameters from a traffic capture, without the pains of having to have a human
expert doing it and writing the corresponding adaptor (aka mapper) is a key challenge. One
direction can be to use statistical learning methods, such as PCA (Principal Component

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 167

Analysis). In this context, it is also important to consider methods that can lean in the
presence of noisy data.

Other challenges have also been discussed: it is important to learn not just a system,
but also a model of its environment. For a wide use of model learning, it is also important
to be able to learn models that address non-functional characteristics of software such as
performance or security. For a large number of applications, it is also important to learn
understandable models, that can easily be interpreted. In this view, it may be better to
learn simpler, more abstract models than more accurate ones that could be too complex.

Throughout the seminar, we considered a crucial issue: can learning end up with a
consistent approximation: probably an over approximation, or maybe an under approxima-
tion? Most state based learning approaches produce models that are neither an over- nor an
under-approximation. Rule based systems are more sensitive to the notion of monotonicity.
But maybe the issue of having a consistent over-approximation is only useful in the context
of verification, where we need a boolean answer. Another direction is to consider accuracy,
as in the PAC concept (Probably Approximately Correct).

Finally, other issues with models have also been discussed. First, with most current
tools, handling of timing issues, esp. events caused by a timeout, is done in ad hoc manner.
Research is still need to adapt learning with a sound model for the passage of time. We also
discussed the use of causality for identifying data relations. The idea is to use variations on
some input parameters to check their influence on output parameters.

4.2 Combining White-Box and Glass-Box Analysis
Falk Howar (IPSSE – Goslar, DE), Andreas Abel (Universität des Saarlandes – Saarbrücken,
DE), Pavol Bielik (ETH Zürich, CH), Radu Grosu (TU Wien, AT), Roland Groz (LIG –
Grenoble, FR), Reiner Hähnle (TU Darmstadt, DE), Bengt Jonsson (Uppsala University,
SE), Mohammad Reza Mousavi (Halmstad University, SE), Zvonimir Rakamaric (University
of Utah – Salt Lake City, US), Alessandra Russo (Imperial College London, GB), Sicco
Verwer (TU Delft, NL), and Andrzej Wasowski (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Falk Howar, Andreas Abel, Pavol Bielik, Radu Grosu, Roland Groz, Reiner Hähnle, Bengt
Jonsson, Mohammad Reza Mousavi, Zvonimir Rakamaric, Alessandra Russo, Sicco Verwer, and
Andrzej Wasowski

In this session, we explored ideas for combining black-box and analyses glass-box analyses
in a meaningful way that would benefit either one analysis technique, or lead to a new and
more powerful combined approach. The session identified three potential scenarios for the
integration of approaches from both worlds, and discussed resulting practical challenges.

Learning for Environment Generation

The first idea was using learned models for verification: a model of a component’s environment
could be used to close the (open) component for verification. The main challenge in this
scenario is providing quality information or correctness guarantees for models. Without such
guarantees verification may not be sound, but it may still be able to find bugs.

16172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

168 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

Using Glass-Box Techniques in Learning

A second idea was using glass-box techniques in automata learning. There exist already some
works that incorporate domain information generated by static analysis (e.g., for partial
order reduction on the alphabet). Other glass-box techniques may be useful for as a basis
for implementing equivalence queries or new kinds of queries that can speed up the learning
process (e.g., that after some prefix a certain behaviour is never observable).

Integrating Learning for Glass-Box Analysis

The third idea was a tight integration of glass-box and black-box techniques: Static analysis
could profit from dynamic analysis when it fails to produce good enough results. At the
same time, the results produced by a learning algorithm could be improved by using static
analysis to determine what to expose of a system during learning. The main challenge in
this scenario is defining an interface for exchanging information between the two analysis
techniques.

4.3 Machine learning for System Composition
Falk Howar (IPSSE – Goslar, DE), Amel Bennaceur (The Open University – Milton Keynes,
GB), Bengt Jonsson (Uppsala University, SE), Alessandra Russo (Imperial College London,
GB), Sicco Verwer (TU Delft, NL), and Andrzej Wasowski (IT University of Copenhagen,
DK)

License Creative Commons BY 3.0 Unported license
© Falk Howar, Amel Bennaceur, Bengt Jonsson, Alessandra Russo, Sicco Verwer, and Andrzej
Wasowski

The topic of machine learning for system composition was discussed in this break-out session.
Machine Learning approach, in this context, is primarily intended to to be automata learning.
The system composition problem is therefore how to combine together automata that describe
behaviours of components of a system. Two possible approaches were identified. On one hand,
the union of the languages of the different components can be considered and the automata of
the entire system can be computed using automata learning mechanisms. But clearly this may
have scalability problems. A second approach would be to start from individual automata of
each component and then learn mediator models that allow the composition of the individual
automata. Learning automata can in this case be used for both learning individual automata
as well as learning mediator’s automata. On the other hand, the area of learning state
machine has also seen work in the context of logic-based learning, where the objectives is to
learn temporal specification that can be translated into labelled transition systems that cover
given positive traces and do not cover negative traces. Interesting question is there whether
there is a potential synergy between logic-based learning and learning automata that could
lead to novel mechanisms and/or improvements of state machine learning processes. Main
features of logic-based learning include knowledge about the problem in hand. For instance
they can include general knowledge about state merge; they take in input labelled positive
and negative traces; and they are capable of learning linear temporal logic descriptions that,
when translated into labelled transition system behaviour models, are guaranteed to accept
the positive traces and reject all the negative traces. Finally they learn within the search
space of a defined language bias, which can declaratively constraints with domain-specific
expert knowledge. So, one of the open questions is how the two approaches relate with each

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 169

other. Are there similarities between learning automata and logic-based learning that can
be exploited to allow synergisms between the two types of ML approaches in the context of
software analysis. It has been pointed out that earlier work exists on how to translate State
Machine language into first-order (FO) logic knowledge representation language IDP. This
FO formula gets grounded to a propositional satisfiability, which is solved using a SAT solver.
The LBL approach is similar but aims to find an FO formula directly, which gets translated
into a labeled transition system after learning takes place. So, a very promising direction for
research is to combine these methods, adding the capability of including expert-knowledge
as constraints to the state machine learning process. A synergy between logic-based learning
and learning automata may also lead to the development of distributed learning algorithms
that allow models of system components to be learned collaboratively in a manner that
guarantee properties of the composition expressed as constraints in the expert knowledge of
the learner of each component. For the learning of mediator models, it would be interesting to
try to use logic-based learning to infer the mediator (glue code) between existing components.
In this case, the descriptions of the components represent a model of the environment
while the desirable properties of the interactions represents the goal model from which a
declarative specification that gives the mediator automata could be learned. We could then
compare/contrast the result with that obtained by using automata learning.

4.4 Combination of Static Analysis and Learning
Bernhard Steffen (TU Dortmund, DE), Pavol Bielik (ETH Zürich, CH), Radu Grosu (TU
Wien, AT), Reiner Hähnle (TU Darmstadt, DE), Bengt Jonsson (Uppsala University, SE),
Mohammad Reza Mousavi (Halmstad University, SE), Daniel Neider (Los Angeles, US), and
Zvonimir Rakamaric (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Bernhard Steffen, Pavol Bielik, Radu Grosu, Reiner Hähnle, Bengt Jonsson, Mohammad Reza
Mousavi, Daniel Neider, and Zvonimir Rakamaric

In particular, because of the previous discussion in the Discussion Group on Black Box and
White Box Methods, the discussion here focused on two topics:
1. How to combine concolic execution and learning. As a success [1] was mentioned which

uses the (concrete) access sequences of a learned hypothesis as a means to provide concrete
values to drive the concolic/symbolic execution by inserting fitting concrete values into
the symbolic execution process. Essentially this means that one uses automata learning
as a supportive oracle for providing adequate concrete values for concolic execution. On
the other side, the concolic or symbolic execution may support the test-based search for
counter examples (the typical practical realization of the so-called equivalence queries) by
reducing the search space. A more general underlying question here is how to synchronize
the two worlds, meaning how symbolic states that arise during symbolic execution can be
related to the states of a learned hypothesis. This relation hinges on a common notational
understanding in terms of an adequate abstraction level. Such a level may be revealed
via the search for e.g. key variables (e.g. those that strongly influence the control flow)
using ‘classical’ static analysis techniques (slicing etc.).

2. In contrast to static analysis and typical other white box techniques, learning does not
provide any guarantees like over approximation or under approximation. We discussed
the question of whether it might be possible use static analysis to guarantee over-
approximation during the learning process. It seems that reducing the chain of hypothesis

16172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

170 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

to only contain over approximations almost inevitably breaks termination in general.
Some compare automata learning with polynomial interpolation, as it like automata learning:

Provides precise answers if the function to be approximated is indeed a polynomial of
degree n, the degree of the current interpolation (just replace degree by number of states).
There is in general no way to guarantee that the polynomial is an over or upper approx-
imation of the target function.

The way proposed during the discussion to replace all the parts that are not really known by
‘chaos’ (i.e. the process which can do whatever it likes), reminds me of setting all function
value outside the supported set to infinity, which certainly guarantees over approximation,
but, in a way, destroys the charm of the interpolation idea, which consists of leveraging finite
information to obtain something infinite (unfortunately at the cost of the abovementioned
guarantees). However, like in polynomial interpolation, one may think of metrics and ways
of error approximation (here in terms of probabilities). It still has to be seen, how practical
such approaches might be.

An alternative approach could be to not guarantee over approximation continuously, but
only on demand, and this approach could well profit from static analysis, showing that all
the abstractly feasible paths are indeed covered by the hypothesis.

References
1 CY Cho, D Babic, P Poosankam, KZ Chen, EXJ Wu, D Song MACE: Model-inference-

Assisted Concolic Exploration for Protocol and Vulnerability Discovery. USENIX Security
Symposium, pp. 139–154. 2011

4.5 Benchmark Building and Sharing
Frits Vaandrager (Radboud University Nijmegen, NL), Dalal Alrajeh (Imperial College London,
GB), Amel Bennaceur (The Open University – Milton Keynes, GB), Roland Groz (LIG –
Grenoble, FR), Karl Meinke (KTH Royal Institute of Technology – Stockholm, SE), Daniel
Neider (Los Angeles, US), Bernhard Steffen (TU Dortmund, DE), and Neil Walkinshaw
(University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Frits Vaandrager, Dalal Alrajeh, Amel Bennaceur, Roland Groz, Karl Meinke, Daniel Neider,
Bernhard Steffen, and Neil Walkinshaw

We had an interesting discussion on the use of benchmarks for automata learning and testing.
Radboud University has set up a repository for Mealy machines and register automata.
Frits Vaandrager encouraged everybody to submit benchmarks. Extension to other classes
of models such as Moore machines, DFAs,.. are encouraged. All participants agreed that
benchmarks are important and useful. Benchmarks measure the relative performance of
different approaches/systems and they are important to check whether tools and methods
advance and whether new methods are effective. Systematic use of benchmarks is a sign of
maturity of a scientific field. Several participants offered to contribute benchmarks to the
Radboud University repository. The discussion made it clear that (a) we have different types
of benchmarks, and (b) many different criteria for evaluation of algorithms and tools.

Different types of benchmarks:
Benchmarks for evaluating efficiency of algorithms and tools
Challenges for pushing the state-of-the-art (e.g. RERS challenges)
Benchmarks for illustrating usefulness of a method or tool.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 171

Criteria for evaluation of algorithms and tools:
Does the tool aim at fully learning the benchmark or just at giving suitable aggregate
information of data that have been gathered. E.g. there are tools for invariant generation.
Number of inputs events
Number of test sequences
Wall clock time needed for learning (reset or certain inputs may require lot of time)
Quality of intermediate hypothesis; how long it takes before you get first reasonable
model
How interpretable are the results (e.g. by discovering hierarchy and parallel composition)
How easy it is to parallelize learning

We agreed to elaborate this list; when people come with new tools/algorithms they should
make it clear, using the benchmarks, at which points they are improving the state-of-the-art
We also discussed formats for the benchmarks: For Mealy machines dot files appear to be
ok For register automata, Fides Aarts and Falk Howar have proposed a format. Since in
the area of EFSMs things have not stabilized yet standardization may be A mature field is
characterized by the presence of two other types of evaluation: Substantial (industrial) case
studies are important to check whether tools/methods are relevant for practical problems
and do sufficiently scale. Experimental usability studies are needed to find out whether a
new method/tool can be integrated into practical workflow with advantage.

4.6 Learning and Testing
Neil Walkinshaw (University of Leicester, GB), Andreas Abel (Universität des Saarlandes –
Saarbrücken, DE), Dalal Alrajeh (Imperial College London, GB), Pavol Bielik (ETH Zürich,
CH), Roland Groz (LIG – Grenoble, FR), Reiner Hähnle (TU Darmstadt, DE), Karl Meinke
(KTH Royal Institute of Technology – Stockholm, SE), Mohammad Reza Mousavi (Halmstad
University, SE), Daniel Neider (Los Angeles, US), Zvonimir Rakamaric (University of Utah –
Salt Lake City, US), Bernhard Steffen (TU Dortmund, DE), and Frits Vaandrager (Radboud
University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
© Neil Walkinshaw, Andreas Abel, Dalal Alrajeh, Pavol Bielik, Roland Groz, Reiner Hähnle, Karl
Meinke, Mohammad Reza Mousavi, Daniel Neider, Zvonimir Rakamaric, Bernhard Steffen, and
Frits Vaandrager

We had an active discussion on the combination of testing and inference. The discussion
was structured according to SWOT (Strengths, Weaknesses, Opportunities and Threats),
to provide an idea of the state-of-the-art, and where things could go from here. These are
summarised individually in the following paragraphs.

Strengths: Automation is a key strength, addressing the key weakness with conventional
Model Based Testing (the need to invest effort into producing a model). The automation
is especially pronounced when the models that are inferred are associated with established
testing algorithms (as is the case for Finite State Machines). Ultimately, the approach does
require a degree of manual intervention (e.g. to validate test outputs), but the point was made
that another strength of the approach is that this actually dovetails nicely with iterative,
agile techniques. If the underlying development process is iterative, inference-based testing
can be used to automatically generate test inputs, whilst the validation can occur in its
normal setting. There was also the observation that current approaches that combine testing

16172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

172 16172 – Machine Learning for Dynamic Software Analysis: Potentials and Limits

and inference tend to extract value from established test sets – the existing tests provide the
basis for the (initial) model inference.

Weaknesses: Current efforts to combine model inference and testing still suffer from
numerous weaknesses, presenting a fertile basis for future research. They do not tend to scale
well, often requiring an unrealistic number of test executions or other forms of user input.
The currently inferred models tend to have limited expressivity (being predominantly FSMs).
In settings where there are different potential Machine Learners, the task of choosing a given
learner is often still a matter of intuition. Then there is also the fact that current efforts
at empirical evaluation are often very limited; they are rarely compared against random
testing, rarely involve genuine / seeded faults, often focus on small-scale systems, and are
often based upon questionable metrics of accuracy and efficiency. There is also the broader
question of what it means when a test-run has “finished” – there has been little discussion of
how much assurance can be derived from this. Finally, there is the task of implementation;
the challenge of abridging what are often complex Machine Learning systems with a fully
fledged testing engine is challenging, and tools can accordingly rarely be easily deployed.

Opportunities: There is an extensive interest from industry; the problems addressed by the
combination of testing and inference are timely. There are also several avenues by which
additional knowledge can be embedded into the process (e.g. domain knowledge to prevent
inference mistakes), which could easily address some of the aforementioned weaknesses.
Product-lines offer an interesting, more controlled environment within which to develop
test/inference systems. If the approaches are used as the basis for regression testing, this
can remove a lot of the manual effort required for validating test outputs (because this can
be checked against previous versions instead).

Threats: Happily, the room could only think of few threats. The top one was that, although
industry is generally enthusiastic about the idea of automated testing and the opportunities
that ML brings, there are often unrealistic expectations. This can lead to frustration,
e.g. when it comes to the realisation that abstractions have to be generated.

Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, and Karl Meinke 173

Participants

Andreas Abel
Universität des Saarlandes –
Saarbrücken, DE

Dalal Alrajeh
Imperial College London, GB

Amel Bennaceur
The Open University - Milton
Keynes, GB

Pavol Bielik
ETH Zürich, CH

Radu Grosu
TU Wien, AT

Roland Groz
LIG – Grenoble, FR

Reiner Hähnle
TU Darmstadt, DE

Falk Howar
IPSSE – Goslar, DE

Bengt Jonsson
Uppsala University, SE

Karl Meinke
KTH Royal Institute of
Technology – Stockholm, SE

Mohammad Reza Mousavi
Halmstad University, SE

Daniel Neider
Los Angeles, US

Zvonimir Rakamaric
University of Utah – Salt Lake
City, US

Alessandra Russo
Imperial College London, GB

Bernhard Steffen
TU Dortmund, DE

Frits Vaandrager
Radboud Univ. Nijmegen, NL

Sicco Verwer
TU Delft, NL

Neil Walkinshaw
University of Leicester, GB

Andrzej Wasowski
IT Univ. of Copenhagen, DK

16172

	Executive Summary Amel Bennaceur, Reiner Hähnle, and Karl Meinke
	Table of Contents
	Overview of Talks
	Machine Learning for Emergent Middleware Amel Bennaceur
	Learning Register Automata Models Falk Howar
	Static (Software) Analysis Reiner Hähnle
	Learning-based Testing: Recent Progress and Future Prospects Karl Meinke
	Towards Automata Learning in Practice Bernhard Steffen
	Learning State Machines Sicco Verwer

	Working groups
	Different Kinds of Models Andreas Abel, Amel Bennaceur, Roland Groz, Falk Howar, Frits Vaandrager, Sicco Verwer, and Neil Walkinshaw
	Combining White-Box and Glass-Box Analysis Falk Howar, Andreas Abel, Pavol Bielik, Radu Grosu, Roland Groz, Reiner Hähnle, Bengt Jonsson, Mohammad Reza Mousavi, Zvonimir Rakamaric, Alessandra Russo, Sicco Verwer, and Andrzej Wasowski
	Machine learning for System Composition Falk Howar, Amel Bennaceur, Bengt Jonsson, Alessandra Russo, Sicco Verwer, and Andrzej Wasowski
	Combination of Static Analysis and Learning Bernhard Steffen, Pavol Bielik, Radu Grosu, Reiner Hähnle, Bengt Jonsson, Mohammad Reza Mousavi, Daniel Neider, and Zvonimir Rakamaric
	Benchmark Building and Sharing Frits Vaandrager, Dalal Alrajeh, Amel Bennaceur, Roland Groz, Karl Meinke, Daniel Neider, Bernhard Steffen, and Neil Walkinshaw
	Learning and Testing Neil Walkinshaw, Andreas Abel, Dalal Alrajeh, Pavol Bielik, Roland Groz, Reiner Hähnle, Karl Meinke, Mohammad Reza Mousavi, Daniel Neider, Zvonimir Rakamaric, Bernhard Steffen, and Frits Vaandrager

	Participants

