The main theme of this workshop is 'Spatial Representation: Continuous vs. Discrete'. Spatial representation has two contrasting but interacting aspects (i) representation \emph{of} spaces' and (ii) representation \emph{by} spaces. In this paper we will examine two aspects that are common to both interpretations of the theme, namely nerve constructions and refinement. Representations change, data changes, spaces change. We will examine the possibility of a 'differential geometry' of spatial representations of both types, and in the sequel give an algebra of differential forms that has the potential to handle the dynamical aspect of such a geometry. We will discuss briefly a conjectured class of spaces, generalising the Cantor set which would seem ideal as a test-bed for the set of tools we are developing.