eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-09-06
33:1
33:18
10.4230/LIPIcs.APPROX-RANDOM.2016.33
article
On the Structure of Quintic Polynomials
Hatami, Pooya
We study the structure of bounded degree polynomials over finite fields. Haramaty and Shpilka [STOC 2010] showed that biased degree three or four polynomials admit a strong structural property. We confirm that this is the case for degree five polynomials also. Let F=F_q be a prime field. Suppose f:F^n to F is a degree five polynomial with bias(f)=delta. We prove the following two structural properties for such f.
1. We have f= sum_{i=1}^{c} G_i H_i + Q, where G_i and H_is are nonconstant polynomials satisfying deg(G_i)+deg(H_i)<= 5 and Q is a degree <5 polynomial. Moreover, c does not depend on n.
2. There exists an Omega_{delta,q}(n) dimensional affine subspace V subseteq F^n such that f|_V is a constant.
Cohen and Tal [Random 2015] proved that biased polynomials of degree at most four are constant on a subspace of dimension Omega(n). Item 2.]extends this to degree five polynomials. A corollary to Item 2. is that any degree five affine disperser for dimension k is also an affine extractor for dimension O(k). We note that Item 2. cannot hold for degrees six or higher.
We obtain our results for degree five polynomials as a special case of structure theorems that we prove for biased degree d polynomials when d<|\F|+4. While the d<|F|+4 assumption seems very restrictive, we note that prior to our work such structure theorems were only known for d<|\F| by Green and Tao [Contrib. Discrete Math. 2009] and Bhowmick and Lovett [arXiv:1506.02047]. Using algorithmic regularity lemmas for polynomials developed by Bhattacharyya, et al. [SODA 2015], we show that whenever such a strong structure exists, it can be found algorithmically in time polynomial in n.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol060-approx-random2016/LIPIcs.APPROX-RANDOM.2016.33/LIPIcs.APPROX-RANDOM.2016.33.pdf
Higher-order Fourier analysis
Structure Theorem
Polynomials
Regularity lemmas