We study various generalizations of the secretary problem with submodular objective functions. Generally, a set of requests is revealed step-by-step to an algorithm in random order. For each request, one option has to be selected so as to maximize a monotone submodular function while ensuring feasibility. For our results, we assume that we are given an offline algorithm computing an alpha-approximation for the respective problem. This way, we separate computational limitations from the ones due to the online nature. When only focusing on the online aspect, we can assume alpha = 1.

In the submodular secretary problem, feasibility constraints are cardinality constraints, or equivalently, sets are feasible if and only if they are independent sets of a k-uniform matroid. That is, out of a randomly ordered stream of entities, one has to select a subset of size k. For this problem, we present a 0.31alpha-competitive algorithm for all k, which asymptotically reaches competitive ratio alpha/e for large k. In submodular secretary matching, one side of a bipartite graph is revealed online. Upon arrival, each node has to be matched permanently to an offline node or discarded irrevocably. We give a 0.207alpha-competitive algorithm. This also covers the problem, in which sets of entities are feasible if and only if they are independent with respect to a transversal matroid. In both cases, we improve over previously best known competitive ratios, using a generalization of the algorithm for the classic secretary problem.

Furthermore, we give an O(alpha d^(-2/(B-1)))-competitive algorithm for submodular function maximization subject to linear packing constraints. Here, d is the column sparsity, that is the maximal number of none-zero entries in a column of the constraint matrix, and B is the minimal capacity of the constraints. Notably, this bound is independent of the total number of constraints. We improve the algorithm to be O(alpha d^(-1/(B-1)))-competitive if both d and B are known to the algorithm beforehand.