We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α be the cardinality of the largest independent set. Our goal is to estimate α in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α and β.

For unit-length intervals, we obtain a (2+ε)-approximation to α and β in poly(log(n)/ε) space. We also show a matching lower bound. Combined with the 3/2-approximation for insertion-only streams by Cabello and Perez-Lanterno [Cabello and Pérez-Lantero, 2017], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a (8√3/π)-approximation to α and β in poly(log(n)/ε) space, which is closely related to the hexagonal circle packing constant.

Finally, we provide algorithms for estimating α for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α and β, where the parameter is the ratio of maximum to minimum interval length.