LIPIcs.APPROX-RANDOM.2024.43.pdf
- Filesize: 0.72 MB
- 16 pages
Interactive coding allows two parties to conduct a distributed computation despite noise corrupting a certain fraction of their communication. Dani et al. (Inf. and Comp., 2018) suggested a novel setting in which the amount of noise is unbounded and can significantly exceed the length of the (noise-free) computation. While no solution is possible in the worst case, under the restriction of oblivious noise, Dani et al. designed a coding scheme that succeeds with a polynomially small failure probability. We revisit the question of conducting computations under this harsh type of noise and devise a computationally-efficient coding scheme that guarantees the success of the computation, except with an exponentially small probability. This higher degree of correctness matches the case of coding schemes with a bounded fraction of noise. Our simulation of an N-bit noise-free computation in the presence of T corruptions, communicates an optimal number of O(N+T) bits and succeeds with probability 1-2^(-Ω(N)). We design this coding scheme by introducing an intermediary noise model, where an oblivious adversary can choose the locations of corruptions in a worst-case manner, but the effect of each corruption is random: the noise either flips the transmission with some probability or otherwise erases it. This randomized abstraction turns out to be instrumental in achieving an optimal coding scheme.
Feedback for Dagstuhl Publishing