A tournament is a complete directed graph. A source in a tournament is a vertex that has no in-neighbours (every other vertex is reachable from it via a path of length 1), and a king in a tournament is a vertex v such that every other vertex is reachable from v via a path of length at most 2. It is well known that every tournament has at least one king. In particular, a maximum out-degree vertex is a king. The tasks of finding a king and a maximum out-degree vertex in a tournament has been relatively well studied in the context of query complexity. We study the communication complexity of finding a king, of finding a maximum out-degree vertex, and of finding a source (if it exists) in a tournament, where the edges are partitioned between two players. The following are our main results for n-vertex tournaments: - We show that the communication task of finding a source in a tournament is equivalent to the well-studied Clique vs. Independent Set (CIS) problem on undirected graphs. As a result, known bounds on the communication complexity of CIS [Yannakakis, JCSS'91, Göös, Pitassi, Watson, SICOMP'18] imply a bound of Θ̃(log² n) for finding a source (if it exists, or outputting that there is no source) in a tournament. - The deterministic and randomized communication complexities of finding a king are Θ(n). The quantum communication complexity of finding a king is Θ̃(√n). - The deterministic, randomized, and quantum communication complexities of finding a maximum out-degree vertex are Θ(n log n), Θ̃(n) and Θ̃(√n), respectively. Our upper bounds above hold for all partitions of edges, and the lower bounds for a specific partition of the edges. One of our lower bounds uses a fooling-set based argument, and all our other lower bounds follow from carefully-constructed reductions from Set-Disjointness. An interesting point to note here is that while the deterministic query complexity of finding a king has been open for over two decades [Shen, Sheng, Wu, SICOMP'03], we are able to essentially resolve the complexity of this problem in a model (communication complexity) that is usually harder to analyze than query complexity.
@InProceedings{mande_et_al:LIPIcs.APPROX/RANDOM.2024.64, author = {Mande, Nikhil S. and Paraashar, Manaswi and Sanyal, Swagato and Saurabh, Nitin}, title = {{On the Communication Complexity of Finding a King in a Tournament}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)}, pages = {64:1--64:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-348-5}, ISSN = {1868-8969}, year = {2024}, volume = {317}, editor = {Kumar, Amit and Ron-Zewi, Noga}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.64}, URN = {urn:nbn:de:0030-drops-210571}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2024.64}, annote = {Keywords: Communication complexity, tournaments, query complexity} }
Feedback for Dagstuhl Publishing