eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2022-07-11
17:1
17:15
10.4230/LIPIcs.CCC.2022.17
article
Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds
Khaniki, Erfan
1
2
https://orcid.org/0000-0002-5843-7315
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
A map g:{0,1}ⁿ → {0,1}^m (m > n) is a hard proof complexity generator for a proof system P iff for every string b ∈ {0,1}^m ⧵ Rng(g), formula τ_b(g) naturally expressing b ∉ Rng(g) requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan-Wigderson generator. Razborov [A. A. {Razborov}, 2015] conjectured that if A is a suitable matrix and f is a NP∩CoNP function hard-on-average for 𝖯/poly, then NW_{f, A} is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of Razborov’s conjecture for AC⁰-Frege. We show that for any symmetric NP∩CoNP function f that is exponentially hard for depth two AC⁰ circuits, NW_{f,A} is a hard proof complexity generator for AC⁰-Frege in a natural setting. As direct applications of this theorem, we show that:
1) For any f with the specified properties, τ_b(NW_{f,A}) (for a natural formalization) based on a random b and a random matrix A with probability 1-o(1) is a tautology and requires superpolynomial (or even exponential) AC⁰-Frege proofs.
2) Certain formalizations of the principle f_n ∉ (NP∩CoNP)/poly requires superpolynomial AC⁰-Frege proofs. These applications relate to two questions that were asked by Krajíček [J. {Krajíček}, 2019].
https://drops.dagstuhl.de/storage/00lipics/lipics-vol234-ccc2022/LIPIcs.CCC.2022.17/LIPIcs.CCC.2022.17.pdf
Proof complexity
Bounded arithmetic
Bounded depth Frege
Nisan-Wigderson generators
Meta-complexity
Lower bounds