We prove a strengthening of the trickle down theorem for partite complexes. Given a (d+1)-partite d-dimensional simplicial complex, we show that if "on average" the links of faces of co-dimension 2 are (1-δ)/d-(one-sided) spectral expanders, then the link of any face of co-dimension k is an O((1-δ)/(kδ))-(one-sided) spectral expander, for all 3 ≤ k ≤ d+1. For an application, using our theorem as a black-box, we show that links of faces of co-dimension k in recent constructions of bounded degree high dimensional expanders have spectral expansion at most O(1/k) fraction of the spectral expansion of the links of the worst faces of co-dimension 2.