eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-06-27
18:1
18:13
10.4230/LIPIcs.CPM.2016.18
article
Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams
Gawrychowski, Pawel
Merkurev, Oleg
Shur, Arseny
Uznanski, Przemyslaw
We consider computing a longest palindrome in the streaming model, where the symbols arrive one-by-one and we do not have random access to the input. While computing the answer exactly using sublinear space is not possible in such a setting, one can still hope for a good approximation guarantee. Our contribution is twofold. First, we provide lower bounds on the space requirements for randomized approximation algorithms processing inputs of length n. We rule out Las Vegas algorithms, as they cannot achieve sublinear space complexity. For Monte Carlo algorithms, we prove a lower bounds of Omega(M log min {|Sigma|, M}) bits of memory; here M=n/E for approximating the answer with additive error E, and M= log n / log (1 + epsilon) for approximating the answer with multiplicative error (1 + epsilon). Second, we design three real-time algorithms for this problem. Our Monte Carlo approximation algorithms for both additive and multiplicative versions of the problem use O(M) words of memory. Thus the obtained lower bounds are asymptotically tight up to a logarithmic factor. The third algorithm is deterministic and finds a longest palindrome exactly if it is short. This algorithm can be run in parallel with a Monte Carlo algorithm to obtain better results in practice. Overall, both the time and space complexity of finding a longest palindrome in a stream are essentially settled.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol054-cpm2016/LIPIcs.CPM.2016.18/LIPIcs.CPM.2016.18.pdf
streaming algorithms
space lower bounds
real-time algorithms
palin- dromes
Monte Carlo algorithms