eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2022-01-27
18:1
18:19
10.4230/LIPIcs.CSL.2022.18
article
Constructive Many-One Reduction from the Halting Problem to Semi-Unification
Dudenhefner, Andrej
1
https://orcid.org/0000-0003-1104-444X
Saarland University, Saarbrücken, Germany
The undecidability of semi-unification (unification combined with matching) has been proven by Kfoury, Tiuryn, and Urzyczyn in the 1990s. The original argument is by Turing reduction from Turing machine immortality (existence of a diverging configuration).
There are several aspects of the existing work which can be improved upon. First, many-one completeness of semi-unification is not established due to the use of Turing reductions. Second, existing mechanizations do not cover a comprehensive reduction from Turing machine halting to semi-unification. Third, reliance on principles such as König’s lemma or the fan theorem does not support constructivity of the arguments.
Improving upon the above aspects, the present work gives a constructive many-one reduction from the Turing machine halting problem to semi-unification. This establishes many-one completeness of semi-unification. Computability of the reduction function, constructivity of the argument, and correctness of the argument is witnessed by an axiom-free mechanization in the Coq proof assistant. The mechanization is incorporated into the existing Coq library of undecidability proofs. Notably, the mechanization relies on a technique invented by Hooper in the 1960s for Turing machine immortality.
An immediate consequence of the present work is an alternative approach to the constructive many-one equivalence of System F typability and System F type checking, compared to the argument established in the 1990s by Wells.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol216-csl2022/LIPIcs.CSL.2022.18/LIPIcs.CSL.2022.18.pdf
constructive mathematics
undecidability
mechanization
semi-unification