Extension Preservation on Dense Graph Classes

Author Ioannis Eleftheriadis



PDF
Thumbnail PDF

File

LIPIcs.CSL.2025.7.pdf
  • Filesize: 0.79 MB
  • 21 pages

Document Identifiers

Author Details

Ioannis Eleftheriadis
  • Department of Computer Science and Technology, University of Cambridge, UK

Cite As Get BibTex

Ioannis Eleftheriadis. Extension Preservation on Dense Graph Classes. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.CSL.2025.7

Abstract

Preservation theorems provide a direct correspondence between the syntactic structure of first-order sentences and the closure properties of their respective classes of models. A line of work has explored preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al., JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS 2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In contrast to the sparse setting, we show that extension preservation fails on most natural dense classes of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
Keywords
  • Extension preservation
  • finite model theory
  • dense graphs
  • cliquewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of model theory. European Journal of Combinatorics, 36:322-330, 2014. URL: https://doi.org/10.1016/j.ejc.2013.06.048.
  2. Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic. Journal of Computer and System Sciences, 49(3):562-588, 1994. 30th IEEE Conference on Foundations of Computer Science. URL: https://doi.org/10.1016/S0022-0000(05)80071-6.
  3. Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-behaved finite structures. SIAM Journal on Computing, 38(4):1364-1381, 2008. URL: https://doi.org/10.1137/060658709.
  4. Albert Atserias, Anuj Dawar, and Phokion G Kolaitis. On preservation under homomorphisms and unions of conjunctive queries. Journal of the ACM (JACM), 53(2):208-237, 2006. URL: https://doi.org/10.1145/1131342.1131344.
  5. John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories. Notre Dame Journal of Formal Logic, 26(3):229-303, 1985. URL: https://doi.org/10.1305/NDJFL/1093870870.
  6. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable fo model checking. ACM Journal of the ACM (JACM), 69(1):1-46, 2021. URL: https://doi.org/10.1145/3486655.
  7. Samuel Braunfeld, Anuj Dawar, Ioannis Eleftheriadis, and Aris Papadopoulos. Monadic nip in monotone classes of relational structures. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Google Scholar
  8. Hector Buffière, Eun Jung Kim, and Patrice Ossona de Mendez. Shallow vertex minors, stability, and dependence. arXiv preprint arXiv:2405.00408, 2024. Google Scholar
  9. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1):77-114, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00184-5.
  10. Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for hereditary graph classes, pages 1-56. London Mathematical Society Lecture Note Series. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781108649094.002.
  11. Peter Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph Theory, 14(4):427-435, 1990. URL: https://doi.org/10.1002/JGT.3190140406.
  12. Anuj Dawar. Finite model theory on tame classes of structures. In International Symposium on Mathematical Foundations of Computer Science, pages 2-12. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-74456-6_2.
  13. Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and System Sciences, 76(5):324-332, 2010. URL: https://doi.org/10.1016/J.JCSS.2009.10.005.
  14. Anuj Dawar and Ioannis Eleftheriadis. Preservation theorems on sparse classes revisited. arXiv preprint arXiv:2405.10887, 2024. URL: https://doi.org/10.48550/arXiv.2405.10887.
  15. Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and Szymon Toruńczyk. First-order model checking on monadically stable graph classes. arXiv preprint arXiv:2311.18740, 2023. Google Scholar
  16. Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on structurally sparse graph classes. In STOC 2023, pages 567-580. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585186.
  17. Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 125:1-125:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.125.
  18. Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 1550-1560, 2024. URL: https://doi.org/10.1145/3618260.3649739.
  19. H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999. Google Scholar
  20. Robert Ganian, Petr Hliněnỳ, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona De Mendez. Shrub-depth: Capturing height of dense graphs. Logical Methods in Computer Science, 15, 2019. Google Scholar
  21. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3), June 2017. URL: https://doi.org/10.1145/3051095.
  22. Yuri Gurevich. Toward logic tailored for computational complexity. Computation and Proof Theory, pages 175-216, 1984. Google Scholar
  23. Ulrich Knauer and Kolja Knauer. Algebraic Graph Theory: Morphisms, Monoids and Matrices. De Gruyter, Berlin, Boston, 2019. URL: https://doi.org/doi:10.1515/9783110617368.
  24. Jaroslav Nešetřil and Patrice Ossona De Mendez. First order properties on nowhere dense structures. The Journal of Symbolic Logic, 75(3):868-887, 2010. URL: http://www.jstor.org/stable/20799288, URL: https://doi.org/10.2178/JSL/1278682204.
  25. Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms, volume 28. Springer Science & Business Media, 2012. Google Scholar
  26. Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2014-2033. SIAM, 2021. Google Scholar
  27. Benjamin Rossman. Homomorphism preservation theorems. Journal of the ACM (JACM), 55(3):1-53, 2008. URL: https://doi.org/10.1145/1379759.1379763.
  28. W. W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic, 24(1):15-16, 1959. URL: https://doi.org/10.2307/2964569.
  29. Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 663-700. IEEE, 2023. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail