A Simple Computability Theorem for Colorless Tasks in Submodels of the Iterated Immediate Snapshot

Authors Yannis Coutouly, Emmanuel Godard



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.16.pdf
  • Filesize: 0.92 MB
  • 22 pages

Document Identifiers

Author Details

Yannis Coutouly
  • Aix Marseille University, France
Emmanuel Godard
  • Aix Marseille University, France

Cite AsGet BibTex

Yannis Coutouly and Emmanuel Godard. A Simple Computability Theorem for Colorless Tasks in Submodels of the Iterated Immediate Snapshot. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 16:1-16:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.DISC.2024.16

Abstract

The Iterated Immediate Snapshot model (IIS) is a central model in distributed computing. We present our work in the message adversary setting. We consider general message adversaries whose executions are arbitrary subsets of executions M of the IIS message adversary. We present a complete and explicit characterization of solvable colorless tasks given any submodel of IIS. Based upon the geometrization mapping geo introduced in [Yannis Coutouly and Emmanuel Godard, 2023] to investigate set-agreement in general submodels, we give a simple necessary and sufficient condition for computability. The geometrization geo associates to any execution a point in R^N. A colorless task (I, O, Δ) is solvable under M if and only if there is a continuous function f : geo(skelⁿ(I) × M) ⟶ | O| carried by Δ. This necessary and sufficient condition for colorless tasks was already known for full models like the Iterated Immediate Snapshot model [Maurice Herlihy et al., 2013] so our result is an extension of the characterization to any arbitrary submodels. It also shows the notion of continuity that is relevant for distributed computability of submodels is not the one from abstract simplicial complexes but the standard one from R^N. As an example of its effectiveness, we can now derive the characterization of the computability of set-agreement on submodels from [Yannis Coutouly and Emmanuel Godard, 2023] by a direct application of the No-Retraction theorem of standard topology textbook. We also give a new fully geometric proof of the known characterization of computable colorless tasks for t-resilient layered snapshot model by using cross-sections of fiber bundles, a standard tool in algebraic topology.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computability
  • Theory of computation → Distributed algorithms
Keywords
  • topological methods
  • geometric simplicial complex
  • set-agreement

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yehuda Afek and Eli Gafni. Asynchrony from Synchrony, pages 225-239. Number 7730 in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013. Google Scholar
  2. Dana Angluin. Local and global properties in networks of processors (extended abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 82-93. ACM, 1980. URL: https://doi.org/10.1145/800141.804655.
  3. Hagit Attiya, Armando Castañeda, and Thomas Nowak. Topological characterization of task solvability in general models of computation. In Rotem Oshman, editor, Proceedings of the 37th International Symposium on Distributed Computing (DISC'23), volume 281 of LIPICS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. To appear. URL: https://doi.org/10.4230/LIPICS.DISC.2023.5.
  4. E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm. Distributed Computing, 14(3):127-146, 2001. URL: https://doi.org/10.1007/PL00008933.
  5. Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asynchronous computations. In STOC '93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 91-100, New York, NY, USA, 1993. ACM Press. URL: https://doi.org/10.1145/167088.167119.
  6. Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of wait-free computation (extended abstract). In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, PODC '97, pages 189-198. ACM, 1997. URL: https://doi.org/10.1145/259380.259439.
  7. Ralph L Cohen. Bundles, homotopy, and manifolds. Lecture notes - Standford University, 2023. Google Scholar
  8. Yannis Coutouly and Emmanuel Godard. A topology by geometrization for sub-iterated immediate snapshot message adversaries and applications to set-agreement. In Rotem Oshman, editor, Proceedings of the 37th International Symposium on Distributed Computing (DISC'23), volume 281 of LIPICS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. To appear. URL: https://doi.org/10.4230/LIPICS.DISC.2023.15.
  9. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.
  10. Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability theorem. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC '14, Paris, France, July 15-18, 2014, pages 222-231. ACM, 2014. URL: https://doi.org/10.1145/2611462.2611477.
  11. Emmanuel Godard and Eloi Perdereau. Back to the coordinated attack problem. Math. Struct. Comput. Sci., 30(10):1089-1113, 2020. URL: https://doi.org/10.1017/S0960129521000037.
  12. Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced Course, pages 393-481, London, UK, 1978. Springer-Verlag. URL: https://doi.org/10.1007/3-540-08755-9_9.
  13. Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. Google Scholar
  14. Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, 2013. Google Scholar
  15. Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory adversaries. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC '10, pages 105-113. Association for Computing Machinery, 2010. URL: https://doi.org/10.1145/1835698.1835724.
  16. Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Computability in distributed computing: A tutorial. SIGACT News, 43(3):88-110, 2012. URL: https://doi.org/10.1145/2421096.2421118.
  17. Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 111-120. ACM, 1993. URL: https://doi.org/10.1145/167088.167125.
  18. Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J. ACM, 46(6):858-923, 1999. URL: https://doi.org/10.1145/331524.331529.
  19. Dmitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation in mathematics. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-71962-5.
  20. Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology Homotopy Appl., 14(2):197-209, 2012. URL: http://projecteuclid.org/euclid.hha/1355321488.
  21. Petr Kuznetsov. Understanding non-uniform failure models. Bull. EATCS, 106:53-77, 2012. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/80.
  22. Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem for fair adversaries. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 387-396. ACM, 2018. URL: https://dl.acm.org/citation.cfm?id=3212765.
  23. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996. Google Scholar
  24. James R. Munkres. Elements Of Algebraic Topology. Addison Wesley Publishing Company, 1984. Google Scholar
  25. J.E. Pin and D. Perrin. Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier, 2004. Google Scholar
  26. Sergio Rajsbaum. Iterated shared memory models. In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics, pages 407-416, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-12200-2_36.
  27. Thibault Rieutord. Combinatorial characterization of asynchronous distributed computability. (Caractérisation combinatoire de la calculabilité distribuée asynchrone). PhD thesis, University of Paris-Saclay, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-02938080.
  28. M. Saks and F. Zaharoglou. "wait-free k-set agreement is impossible: The topology of public knowledge. SIAM J. on Computing, 29:1449-1483, 2000. URL: https://doi.org/10.1137/S0097539796307698.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail