Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs

Authors Maxime Flin , Magnús M. Halldórsson , Alexandre Nolin



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.24.pdf
  • Filesize: 1.11 MB
  • 22 pages

Document Identifiers

Author Details

Maxime Flin
  • Reykjavík University, Iceland
Magnús M. Halldórsson
  • Reykjavík University, Iceland
Alexandre Nolin
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Cite As Get BibTex

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.DISC.2024.24

Abstract

Graph coloring is fundamental to distributed computing. We give the first general treatment of the coloring of virtual graphs, where the graph H to be colored is locally embedded within the communication graph G. Besides generalizing classical distributed graph coloring (where H = G), this captures other previously studied settings, including cluster graphs and power graphs. 
We find that the complexity of coloring a virtual graph depends linearly on the edge congestion of its embedding. The main question of interest is how fast we can color virtual graphs of constant congestion. We find that, surprisingly, these graphs can be colored nearly as fast as ordinary graphs. Namely, we give a O(log⁴log n)-round algorithm for the deg+1-coloring problem, where each node is assigned more colors than its degree. 
This can be viewed as a case where a distributed graph problem can be solved even when the operation of each node is decentralized.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Mathematics of computing → Graph coloring
Keywords
  • Graph Coloring
  • Distributed Algorithms
  • Virtual Graphs
  • Congestion
  • Dilation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon and Sepehr Assadi. Palette sparsification beyond (Δ+1) vertex coloring. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1-6:22. LZI, 2020. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.6.
  2. Ioannis Anagnostides, Christoph Lenzen, Bernhard Haeupler, Goran Zuzic, and Themis Gouleakis. Almost universally optimal distributed Laplacian solvers via low-congestion shortcuts. Distributed Computing, 36(4):475-499, 2023. URL: https://doi.org/10.1007/S00446-023-00454-0.
  3. Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (Δ + 1) vertex coloring. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 767-786, 2019. Full version at https://arxiv.org/abs/1807.08886. URL: https://doi.org/10.1137/1.9781611975482.48.
  4. Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring in time polylogarithmic in Δ. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 15-25. ACM, 2022. URL: https://doi.org/10.1145/3519270.3538440.
  5. Reuven Bar-Yehuda, Keren Censor-Hillel, Yannic Maus, Shreyas Pai, and Sriram V Pemmaraju. Distributed approximation on power graphs. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 501-510, 2020. URL: https://doi.org/10.1145/3382734.3405750.
  6. Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool Publishers, 2013. URL: https://doi.org/10.2200/S00520ED1V01Y201307DCT011.
  7. Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry breaking. Journal of the ACM, 63(3):20:1-20:45, 2016. URL: https://doi.org/10.1145/2903137.
  8. Leonid Barenboim and Uri Goldenberg. Speedup of distributed algorithms for power graphs in the CONGEST model. Technical report, arXiv, 2023. URL: https://doi.org/10.48550/arXiv.2305.04358.
  9. Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The complexity of (Δ+ 1) coloring in congested clique, massively parallel computation, and centralized local computation. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 471-480, 2019. Full version at URL: https://arxiv.org/abs/1808.08419.
  10. Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (Δ+1)-coloring via ultrafast graph shattering. SIAM Journal of Computing, 49(3):497-539, 2020. URL: https://doi.org/10.1137/19M1249527.
  11. Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra. Optimal (degree+1)-coloring in congested clique. In the Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), volume 261 of LIPIcs, pages 46:1-46:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.46.
  12. Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring in congested clique and MPC. SIAM J. Comput., 50(5):1603-1626, 2021. URL: https://doi.org/10.1137/20M1366502.
  13. Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 363-372, 2011. URL: https://doi.org/10.1145/1993636.1993686.
  14. Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2Δ-1)-edge-coloring is much easier than maximal matching in the distributed setting. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 355-370, 2015. URL: https://doi.org/10.1137/1.9781611973730.26.
  15. Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhon. Local distributed rounding: Generalized to MIS, matching, set cover, and beyond. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4409-4447. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH168.
  16. Manuela Fischer. Improved deterministic distributed matching via rounding. In the Proceedings of the International Symposium on Distributed Computing (DISC), volume 91 of LIPIcs, pages 17:1-17:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.DISC.2017.17.
  17. Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin. Coloring fast with broadcasts. In the Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 455-465. ACM, 2023. URL: https://doi.org/10.1145/3558481.3591095.
  18. Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin. A distributed palette sparsification theorem. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024. Google Scholar
  19. Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Fast coloring despite congested relays. In the Proceedings of the International Symposium on Distributed Computing (DISC), 2023. URL: https://doi.org/10.4230/LIPICS.DISC.2023.19.
  20. Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Decentralized distributed graph coloring: Cluster graphs. Technical report, arXiv, May 2024. In submission. URL: https://doi.org/10.48550/arXiv.2405.07725.
  21. Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Decentralized distributed graph coloring II: degree+1-coloring virtual graphs. Technical report, arXiv, 2024. Full version of this paper. URL: https://doi.org/10.48550/arXiv.2408.11041.
  22. Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and Mingquan Ye. Minor sparsifiers and the distributed laplacian paradigm. In the Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00099.
  23. Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of distance-k colorings. In the Proceedings of the International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2020. URL: https://doi.org/10.1007/978-3-030-54921-3_16.
  24. Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 625-634, 2016. URL: https://doi.org/10.1109/FOCS.2016.73.
  25. Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications. In the Proceedings of the International Symposium on Distributed Computing (DISC), LIPIcs, 2023. URL: https://doi.org/10.4230/LIPICS.DISC.2023.22.
  26. Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 3-12, 2015. URL: https://doi.org/10.1145/2767386.2767417.
  27. Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and approximate matching. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1777-1790. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585243.
  28. Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon. Improved distributed network decomposition, hitting sets, and spanners, via derandomization. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2532-2566. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH97.
  29. Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network decomposition. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021. URL: https://arxiv.org/abs/2007.08253.
  30. Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: Low-congestion shortcuts, MST, and Min-Cut. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 202-219. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH16.
  31. Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense minors. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 213-221. ACM, 2021. URL: https://doi.org/10.1145/3465084.3467935.
  32. Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivious routing. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1208-1220. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451098.
  33. Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-Shamir. Near-optimal distributed maximum flow. SIAM J. Comput., 47(6):2078-2117, 2018. URL: https://doi.org/10.1137/17M113277X.
  34. Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International Symposium on Distributed Computing, pages 1-15. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-41527-2_1.
  35. Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and without network decomposition. In the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 1009-1020. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00101.
  36. Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 281-291. ACM, 2022. URL: https://doi.org/10.1145/3519270.3538429.
  37. Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without embedding. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 451-460. ACM, 2016. URL: https://doi.org/10.1145/2933057.2933112.
  38. Bernhard Haeupler, Shyamal Patel, Antti Roeyskoe, Cliff Stein, and Goran Zuzic. Polylog-competitive deterministic local routing and scheduling. CoRR, abs/2403.07410, 2024. URL: https://doi.org/10.48550/arXiv.2403.07410.
  39. Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. Distance-2 coloring in the CONGEST model. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 233-242, 2020. URL: https://doi.org/10.1145/3382734.3405706.
  40. Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Coloring fast without learning your neighbors' colors. In the Proceedings of the International Symposium on Distributed Computing (DISC), pages 39:1-39:17, 2020. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.39.
  41. Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized distributed coloring in CONGEST. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1180-1193. ACM, 2021. Full version at URL: https://arxiv.org/abs/2105.04700.
  42. Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal distributed degree+1 coloring. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 450-463. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520023.
  43. Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via efficient color sampling. Theor. Comput. Sci., 948:113711, 2023. URL: https://doi.org/10.1016/J.TCS.2023.113711.
  44. Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in distributed coloring. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 26-36. ACM, 2022. URL: https://doi.org/10.1145/3519270.3538438.
  45. David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (Δ + 1)-coloring in sublogarithmic rounds. Journal of the ACM, 65:19:1-19:21, 2018. URL: https://doi.org/10.1145/3178120.
  46. D. Hefetz, Y. Maus, F. Kuhn, and A. Steger. A polynomial lower bound for distributed graph coloring in a weak LOCAL model. In the Proceedings of the International Symposium on Distributed Computing (DISC), pages 99-113, 2016. Google Scholar
  47. Shimon Kogan and Merav Parter. Low-congestion shortcuts in constant diameter graphs. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 203-211. ACM, 2021. URL: https://doi.org/10.1145/3465084.3467927.
  48. Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish Rao. Randomized routing and sorting on fixed-connection networks. J. Algorithms, 17(1):157-205, 1994. URL: https://doi.org/10.1006/JAGM.1994.1030.
  49. Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica, 14(2):167-186, 1994. URL: https://doi.org/10.1007/BF01215349.
  50. Frank Thomson Leighton, Bruce M. Maggs, and Andréa W. Richa. Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica, 19(3):375-401, 1999. URL: https://doi.org/10.1007/S004930050061.
  51. Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 42-50. ACM, 2013. URL: https://doi.org/10.1145/2484239.2501983.
  52. Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  53. Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter graphs. Distributed Computing, 18(6):453-460, 2006. URL: https://doi.org/10.1007/S00446-005-0127-6.
  54. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15:1036-1053, 1986. URL: https://doi.org/10.1137/0215074.
  55. Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power graphs via sparsification. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 157-167. ACM, 2023. URL: https://doi.org/10.1145/3583668.3594579.
  56. Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In the Proceedings of the International Symposium on Distributed Computing (DISC), pages 16:1-16:18, 2020. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.16.
  57. Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM J. on Comp., 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
  58. Bruce A. Reed. ω, Δ, and χ. J. Graph Theory, 27(4):177-212, 1998. URL: https://doi.org/10.1002/(SICI)1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K.
  59. Václav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected (1+ε)-shortest paths via minor-aggregates: near-optimal deterministic parallel and distributed algorithms. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 478-487, 2022. URL: https://doi.org/10.1145/3519935.3520074.
  60. Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition and distributed derandomization. In the Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 350-363, 2020. Google Scholar
  61. Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking. In the Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 257-266. ACM, 2010. URL: https://doi.org/10.1145/1835698.1835760.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail