Byzantine Resilient Distributed Computing on External Data

Authors John Augustine , Jeffin Biju, Shachar Meir , David Peleg , Srikkanth Ramachandran , Aishwarya Thiruvengadam



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.3.pdf
  • Filesize: 0.94 MB
  • 23 pages

Document Identifiers

Author Details

John Augustine
  • Indian Institute of Technology Madras, Chennai, India
Jeffin Biju
  • Indian Institute of Technology Madras, Chennai, India
Shachar Meir
  • Weizmann Institute of Science, Rehovot, Israel
David Peleg
  • Weizmann Institute of Science, Rehovot, Israel
Srikkanth Ramachandran
  • Indian Institute of Technology Madras, Chennai, India
Aishwarya Thiruvengadam
  • Indian Institute of Technology Madras, Chennai, India

Acknowledgements

We would like to thank Atharva Chougule for useful ideas.

Cite As Get BibTex

John Augustine, Jeffin Biju, Shachar Meir, David Peleg, Srikkanth Ramachandran, and Aishwarya Thiruvengadam. Byzantine Resilient Distributed Computing on External Data. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.DISC.2024.3

Abstract

We study a class of problems we call retrieval problems in which a distributed network has read-only access to a trusted external data source through queries, and each peer is required to output some computable function of the data. To formalize this, we propose the Data Retrieval Model comprising two parts: (1) a congested clique network with k peers, up to β k of which can be Byzantine in every execution (for suitable values of β ∈ [0,1)); (2) a trusted source of data with no computational abilities, called the External Data Source (or just source for short). This source stores an array 𝒳 of n bits (n ≫ k), providing every peer in the congested clique read-only access to 𝒳 through queries. It is assumed that a query to the source is significantly more expensive than a message between two peers in the network. Hence, we prioritize minimizing the number of queries a peer performs over the number of messages it sends. Retrieval problems are easily solved by having each peer query all of 𝒳, so we focus on designing non-trivial query-efficient protocols for retrieval problems in the DR network that achieve low query performance per peer. Specifically, to initiate this study, we present deterministic and randomized upper and lower bounds for two fundamental problems. The first is the Download problem that requires every peer to output an array of n bits identical to 𝒳. The second problem of focus, Disjunction, requires nodes to learn if some bit in 𝒳 is set to 1.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Distributed algorithms
Keywords
  • Byzantine Fault Tolerance
  • Blockchain Oracle
  • Congested Clique
  • Data Retrieval Model

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yehuda Afek, Gal Giladi, and Boaz Patt-Shamir. Distributed computing with the cloud. In 23rd Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS). Springer, 2021. URL: https://doi.org/10.1007/978-3-030-91081-5_1.
  2. Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC'22, pages 399-417, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519270.3538475.
  3. John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan. A fully-distributed scalable peer-to-peer protocol for byzantine-resilient distributed hash tables. In 34th ACM SPAA, pages 87-98, 2022. URL: https://doi.org/10.1145/3490148.3538588.
  4. John Augustine, Anisur Rahaman Molla, and Gopal Pandurangan. Byzantine agreement and leader election: From classical to the modern. In ACM PODC, pages 569-571, 2021. URL: https://doi.org/10.1145/3465084.3467484.
  5. John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine Connectivity Testing in the Congested Clique. In 36th DISC, pages 7:1-7:21, 2022. URL: https://doi.org/10.4230/LIPICS.DISC.2022.7.
  6. Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning. JCSS, 74(8):1271-1288, 2008. URL: https://doi.org/10.1016/J.JCSS.2007.08.004.
  7. Abdeljalil Beniiche. A study of blockchain oracles, 2020. URL: https://arxiv.org/abs/2004.07140.
  8. Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant gradient descent. In NeurIPS, pages 119-129, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html.
  9. Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. Brahms: Byzantine resilient random membership sampling. Computer Networks, 53(13):2340-2359, 2009. URL: https://doi.org/10.1016/J.COMNET.2009.03.008.
  10. Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial time. Distributed Comput., 35(3):235-263, 2022. URL: https://doi.org/10.1007/S00446-022-00419-9.
  11. Gabriel Bracha. Asynchronous byzantine agreement protocols. Information & Computation, 75:130-143, 1987. URL: https://doi.org/10.1016/0890-5401(87)90054-X.
  12. Giulio Caldarelli. Overview of blockchain oracle research. Future Internet, 14:175, June 2022. URL: https://doi.org/10.3390/fi14060175.
  13. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd Symp. on Operating Systems Design and Implementation, OSDI, pages 173-186. USENIX Assoc., 1999. URL: https://dl.acm.org/citation.cfm?id=296824.
  14. Soma Chaudhuri, Maurice Erlihy, Nancy A Lynch, and Mark R Tuttle. Tight bounds for k-set agreement. J. ACM, 47(5):912-943, 2000. URL: https://doi.org/10.1145/355483.355489.
  15. Arnhav Datar, Nischith Shadagopan M. N, and John Augustine. Gathering of anonymous agents. In AAMAS, pages 1457-1465, 2023. URL: https://doi.org/10.5555/3545946.3598798.
  16. Arnhav Datar, Arun Rajkumar, and John Augustine. Byzantine spectral ranking. In NeurIPS, volume 35, pages 27745-27756, 2022. Google Scholar
  17. Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans. Algorithms, 11(1), August 2014. URL: https://doi.org/10.1145/2629656.
  18. D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J. Computing, 12(4):656-666, 1983. URL: https://doi.org/10.1137/0212045.
  19. El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (decentralized, byzantine, heterogeneous, asynchronous and nonconvex learning). In NeurIPS, pages 25044-25057, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/d2cd33e9c0236a8c2d8bd3fa91ad3acf-Abstract.html.
  20. Sadegh Farhadkhani, Rachid Guerraoui, Lê Nguyên Hoang, and Oscar Villemaud. An equivalence between data poisoning and byzantine gradient attacks. In ICML, pages 6284-6323. PMLR, 2022. URL: https://proceedings.mlr.press/v162/farhadkhani22b.html.
  21. Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzantine attacks. In 13th ESA, pages 803-814. Springer, 2005. URL: https://doi.org/10.1007/11561071_71.
  22. Steven Fortune and James Wyllie. Parallelism in random access machines. In Proc. Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 114-118, 1978. URL: https://doi.org/10.1145/800133.804339.
  23. Roy Friedman, Gabriel Kliot, and Alex Kogan. Hybrid distributed consensus. In Proc. 17th Int. Conference on Principles of Distributed Systems, OPODIS 2013., pages 145-159, 2013. URL: https://doi.org/10.1007/978-3-319-03850-6_11.
  24. Oded Goldreich. Introduction to Property Testing. Cambridge Univ. Press, 2017. Google Scholar
  25. Nirupam Gupta and Nitin H. Vaidya. Fault-tolerance in distributed optimization: The case of redundancy. In ACM PODC, pages 365-374, 2020. URL: https://doi.org/10.1145/3382734.3405748.
  26. Péter Hajnal. An ω (n 4/3) lower bound on the randomized complexity of graph properties. Combinatorica, 11:131-143, 1991. Google Scholar
  27. Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall. Augmenting data center networks with multi-gigabit wireless links. SIGCOMM Comput. Commun. Rev., 41(4):38-49, August 2011. URL: https://doi.org/10.1145/2018436.2018442.
  28. Lane A Hemaspaandra and Mitsunori Ogihara. The complexity theory companion. Acm Sigact News, 32(4):66-68, 2001. URL: https://doi.org/10.1145/568425.568436.
  29. Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast asynchronous byzantine agreement and leader election with full information. In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, SODA 2008, pages 1038-1047, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347196.
  30. Richard M Karp. A survey of parallel algorithms for shared-memory machines. University of California at Berkeley, 1988. Google Scholar
  31. Valerie King. Lower bounds on the complexity of graph properties. In Proc. 20th ACM Symposium on Theory of Computing, STOC '88, pages 468-476, 1988. URL: https://doi.org/10.1145/62212.62258.
  32. Daniel J Kleitman and David Joseph Kwiatkowski. Further results on the aanderaa-rosenberg conjecture. Journal of Combinatorial Theory, Series B, 28(1):85-95, 1980. URL: https://doi.org/10.1016/0095-8956(80)90057-X.
  33. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, July 1982. URL: https://doi.org/10.1145/357172.357176.
  34. Silvio Micali and Tal Rabin. Collective coin tossing without assumptions nor broadcasting. In CRYPTO, pages 253-266, Berlin, Heidelberg, 1991. Springer. URL: https://doi.org/10.1007/3-540-38424-3_18.
  35. Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. An introduction to oracles for asynchronous distributed systems. Future Generation Computer Systems, 18(6):757-767, 2002. URL: https://doi.org/10.1016/S0167-739X(02)00048-1.
  36. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM, 27(2):228-234, April 1980. URL: https://doi.org/10.1145/322186.322188.
  37. Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403-409, 1983. URL: https://doi.org/10.1109/SFCS.1983.48.
  38. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126, February 1978. URL: https://doi.org/10.1145/359340.359342.
  39. Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices. Theoretical Computer Science, 3(3):371-384, 1976. URL: https://doi.org/10.1016/0304-3975(76)90053-0.
  40. Arnold L. Rosenberg. On the time required to recognize properties of graphs: a problem. SIGACT News, 5(4):15-16, October 1973. URL: https://doi.org/10.1145/1008299.1008302.
  41. Lili Su and Nitin H. Vaidya. Multi-agent optimization in the presence of byzantine adversaries: Fundamental limits. In American Control Conf, ACC, pages 7183-7188. IEEE, 2016. URL: https://doi.org/10.1109/ACC.2016.7526806.
  42. Lili Su and Nitin H. Vaidya. Byzantine-resilient multiagent optimization. IEEE Trans. Autom. Control., 66(5):2227-2233, 2021. URL: https://doi.org/10.1109/TAC.2020.3008139.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail