Memory Lower Bounds and Impossibility Results for Anonymous Dynamic Broadcast

Authors Garrett Parzych , Joshua J. Daymude



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.35.pdf
  • Filesize: 0.93 MB
  • 18 pages

Document Identifiers

Author Details

Garrett Parzych
  • School of Computing and Augmented Intelligence, Biodesign Center for Biocomputing, Security and Society Arizona State University, Tempe, AZ, USA
Joshua J. Daymude
  • School of Computing and Augmented Intelligence, Biodesign Center for Biocomputing, Security and Society Arizona State University, Tempe, AZ, USA

Cite AsGet BibTex

Garrett Parzych and Joshua J. Daymude. Memory Lower Bounds and Impossibility Results for Anonymous Dynamic Broadcast. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 35:1-35:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.DISC.2024.35

Abstract

Broadcast is a ubiquitous distributed computing problem that underpins many other system tasks. In static, connected networks, it was recently shown that broadcast is solvable without any node memory and only constant-size messages in worst-case asymptotically optimal time (Hussak and Trehan, PODC'19/STACS'20/DC'23). In the dynamic setting of adversarial topology changes, however, existing algorithms rely on identifiers, port labels, or polynomial memory to solve broadcast and compute functions over node inputs. We investigate space-efficient, terminating broadcast algorithms for anonymous, synchronous, 1-interval connected dynamic networks and introduce the first memory lower bounds in this setting. Specifically, we prove that broadcast with termination detection is impossible for idle-start algorithms (where only the broadcaster can initially send messages) and otherwise requires Ω(log n) memory per node, where n is the number of nodes in the network. Even if the termination condition is relaxed to stabilizing termination (eventually no additional messages are sent), we show that any idle-start algorithm must use ω(1) memory per node, separating the static and dynamic settings for anonymous broadcast. This lower bound is not far from optimal, as we present an algorithm that solves broadcast with stabilizing termination using 𝒪(log n) memory per node in worst-case asymptotically optimal time. In sum, these results reveal the necessity of non-constant memory for nontrivial terminating computation in anonymous dynamic networks.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Networks → Network algorithms
Keywords
  • Dynamic networks
  • anonymity
  • broadcast
  • space complexity
  • lower bounds
  • termination detection
  • stabilizing termination

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Karine Altisen, Stéphane Devismes, Anaïs Durand, Colette Johnen, and Franck Petit. Self-Stabilizing Systems in Spite of High Dynamics. Theoretical Computer Science, 964:113966, 2023. URL: https://doi.org/10.1016/j.tcs.2023.113966.
  2. David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient Overlay Networks. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages 131-145, Banff, AB, Canada, 2001. ACM. URL: https://doi.org/10.1145/502034.502048.
  3. John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed Algorithmic Foundations of Dynamic Networks. ACM SIGACT News, 47(1):30, 2016. Google Scholar
  4. Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and Fernando Pedone. From Byzantine Replication to Blockchain: Consensus is Only the Beginning. In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 424-436, Valencia, Spain, 2020. IEEE. URL: https://doi.org/10.1109/DSN48063.2020.00057.
  5. Arnaud Casteigts. A Journey through Dynamic Networks (with Excursions). Habilitation à diriger des recherches, University of Bordeaux, Bordeaux, France, 2018. Google Scholar
  6. Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility. In Theoretical Computer Science, volume 323 of IFIP Advances in Information and Communication Technology, pages 111-124, Berlin, Heidelberg, 2010. Springer. URL: https://doi.org/10.1007/978-3-642-15240-5_9.
  7. Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest, Fastest, and Foremost Broadcast in Dynamic Networks. International Journal of Foundations of Computer Science, 26(04):499-522, 2015. URL: https://doi.org/10.1142/S0129054115500288.
  8. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-Varying Graphs and Dynamic Networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387-408, 2012. URL: https://doi.org/10.1080/17445760.2012.668546.
  9. Maitri Chakraborty, Alessia Milani, and Miguel A. Mosteiro. A Faster Exact-Counting Protocol for Anonymous Dynamic Networks. Algorithmica, 80(11):3023-3049, 2018. URL: https://doi.org/10.1007/s00453-017-0367-4.
  10. Arjun Chandrasekhar, Deborah M. Gordon, and Saket Navlakha. A Distributed Algorithm to Maintain and Repair the Trail Networks of Arboreal Ants. Scientific Reports, 8(1):9297, 2018. URL: https://doi.org/10.1038/s41598-018-27160-3.
  11. Giuseppe Di Luna and Roberto Baldoni. Non Trivial Computations in Anonymous Dynamic Networks. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015), volume 46 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1-33:16, Rennes, France, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPICS.OPODIS.2015.33.
  12. Giuseppe A. Di Luna and Giovanni Viglietta. Computing in Anonymous Dynamic Networks Is Linear. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 1122-1133, Denver, CO, USA, 2022. IEEE. URL: https://doi.org/10.1109/FOCS54457.2022.00108.
  13. Giuseppe A. Di Luna and Giovanni Viglietta. Optimal Computation in Leaderless and Multi-Leader Disconnected Anonymous Dynamic Networks. In 37th International Symposium on Distributed Computing (DISC 2023), volume 281 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:20, L'Aquila, Italy, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2023.18.
  14. Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis. Conscious and Unconscious Counting on Anonymous Dynamic Networks. In Distributed Computing and Networking, volume 8314 of Lecture Notes in Computer Science, pages 257-271, Berlin, Heidelberg, 2014. Springer. URL: https://doi.org/10.1007/978-3-642-45249-9_17.
  15. Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis. Counting in Anonymous Dynamic Networks under Worst-Case Adversary. In 2014 IEEE 34th International Conference on Distributed Computing Systems, pages 338-347, Madrid, Spain, 2014. IEEE. URL: https://doi.org/10.1109/ICDCS.2014.42.
  16. Giuseppe Antonio Di Luna and Giovanni Viglietta. Brief Announcement: Efficient Computation in Congested Anonymous Dynamic Networks. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages 176-179, Orlando, FL, USA, 2023. ACM. URL: https://doi.org/10.1145/3583668.3594590.
  17. Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Smoothed Analysis of Information Spreading in Dynamic Networks. In 36th International Symposium on Distributed Computing (DISC 2022), volume 246 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:22, Augusta, GA, USA, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2022.18.
  18. Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin Newport. Smoothed Analysis of Dynamic Networks. Distributed Computing, 31(4):273-287, 2018. URL: https://doi.org/10.1007/s00446-017-0300-8.
  19. Michael Feldmann, Christian Scheideler, and Stefan Schmid. Survey on Algorithms for Self-Stabilizing Overlay Networks. ACM Computing Surveys, 53(4):74:1-74:24, 2020. URL: https://doi.org/10.1145/3397190.
  20. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by Mobile Entities: Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science. Springer, Cham, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7.
  21. Vincent Gramoli. From Blockchain Consensus Back to Byzantine Consensus. Future Generation Computer Systems, 107:760-769, 2020. URL: https://doi.org/10.1016/j.future.2017.09.023.
  22. Heiko Hamann. Swarm Robotics: A Formal Approach. Springer, Cham, 1 edition, 2018. URL: https://doi.org/10.1007/978-3-319-74528-2.
  23. Walter Hussak and Amitabh Trehan. On Termination of a Flooding Process. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 153-155, Toronto, ON, Canada, 2019. ACM. URL: https://doi.org/10.1145/3293611.3331586.
  24. Walter Hussak and Amitabh Trehan. On the Termination of Flooding. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1-17:3, Montpellier, France, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.17.
  25. Walter Hussak and Amitabh Trehan. Termination of Amnesiac Flooding. Distributed Computing, 36(2):193-207, 2023. URL: https://doi.org/10.1007/s00446-023-00448-y.
  26. Dariusz R. Kowalski and Miguel A. Mosteiro. Polynomial Counting in Anonymous Dynamic Networks with Applications to Anonymous Dynamic Algebraic Computations. Journal of the ACM, 67(2):1-17, 2020. URL: https://doi.org/10.1145/3385075.
  27. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed Computation in Dynamic Networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, pages 513-522, Cambridge, MA, 2010. ACM. URL: https://doi.org/10.1145/1806689.1806760.
  28. Jintao Liu, Arthur Prindle, Jacqueline Humphries, Marçal Gabalda-Sagarra, Munehiro Asally, Dong-yeon D. Lee, San Ly, Jordi Garcia-Ojalvo, and Gürol M. Süel. Metabolic Co-Dependence Gives Rise to Collective Oscillations within Biofilms. Nature, 523(7562):550-554, 2015. URL: https://doi.org/10.1038/nature14660.
  29. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996. Google Scholar
  30. Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Naming and Counting in Anonymous Unknown Dynamic Networks. In Stabilization, Safety, and Security of Distributed Systems, volume 8255 of Lecture Notes in Computer Science, pages 281-295, Cham, 2013. Springer. URL: https://doi.org/10.1007/978-3-319-03089-0_20.
  31. Regina O'Dell and Roger Wattenhofer. Information Dissemination in Highly Dynamic Graphs. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, pages 104-110, Cologne, Germany, 2005. ACM. URL: https://doi.org/10.1145/1080810.1080828.
  32. Shunhao Oh, Dana Randall, and Andréa W. Richa. Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023), volume 257 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1-6:23, Pisa, Italy, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SAND.2023.6.
  33. Arthur Prindle, Jintao Liu, Munehiro Asally, San Ly, Jordi Garcia-Ojalvo, and Gürol M. Süel. Ion Channels Enable Electrical Communication in Bacterial Communities. Nature, 527(7576):59-63, 2015. URL: https://doi.org/10.1038/nature15709.
  34. Michel Raynal, Julien Stainer, Jiannong Cao, and Weigang Wu. A Simple Broadcast Algorithm for Recurrent Dynamic Systems. In 2014 IEEE 28th International Conference on Advanced Information Networking and Applications, pages 933-939, Victoria, BC, Canada, 2014. IEEE. URL: https://doi.org/10.1109/AINA.2014.115.
  35. Leonie Reichert, Samuel Brack, and Björn Scheuermann. A Survey of Automatic Contact Tracing Approaches Using Bluetooth Low Energy. ACM Transactions on Computing for Healthcare, 2(2):1-33, 2021. URL: https://doi.org/10.1145/3444847.
  36. Corina E. Tarnita, Alex Washburne, Ricardo Martinez-Garcia, Allyson E. Sgro, and Simon A. Levin. Fitness Tradeoffs between Spores and Nonaggregating Cells Can Explain the Coexistence of Diverse Genotypes in Cellular Slime Molds. Proceedings of the National Academy of Sciences, 112(9):2776-2781, 2015. URL: https://doi.org/10.1073/pnas.1424242112.
  37. Giovanni Viglietta. History Trees and Their Applications. In Structural Information and Communication Complexity, volume 14662 of Lecture Notes in Computer Science, pages 3-23, Cham, 2024. Springer. URL: https://doi.org/10.1007/978-3-031-60603-8_1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail