Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs

Authors Alkida Balliu , Pierre Fraigniaud , Patrick Lambein-Monette, Dennis Olivetti , Mikaël Rabie



PDF
Thumbnail PDF

File

LIPIcs.DISC.2024.5.pdf
  • Filesize: 0.82 MB
  • 20 pages

Document Identifiers

Author Details

Alkida Balliu
  • Gran Sasso Science Institute, L'Aquila, Italy
Pierre Fraigniaud
  • IRIF - CNRS & Univ. Paris Cité, France
Patrick Lambein-Monette
  • Unaffiliated
Dennis Olivetti
  • Gran Sasso Science Institute, L'Aquila, Italy
Mikaël Rabie
  • IRIF - Université Paris Cité, France

Cite AsGet BibTex

Alkida Balliu, Pierre Fraigniaud, Patrick Lambein-Monette, Dennis Olivetti, and Mikaël Rabie. Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.DISC.2024.5

Abstract

We revisit asynchronous computing in networks of crash-prone processes, under the asynchronous variant of the standard LOCAL model, recently introduced by Fraigniaud et al. [DISC 2022]. We focus on the vertex coloring problem, and our contributions concern both lower and upper bounds for this problem. On the upper bound side, we design an algorithm tolerating an arbitrarily large number of crash failures that computes an O(Δ²)-coloring of any n-node graph of maximum degree Δ, in O(log^⋆ n) rounds. This extends Linial’s seminal result from the (synchronous failure-free) LOCAL model to its asynchronous crash-prone variant. Then, by allowing a dependency on Δ on the runtime, we show that we can reduce the colors to ((1/2)(Δ+1)(Δ+2)-1). For cycles (i.e., for Δ = 2), our algorithm achieves a 5-coloring of any n-node cycle, in O(log^⋆ n) rounds. This improves the known 6-coloring algorithm by Fraigniaud et al., and fixes a bug in their algorithm, which was erroneously claimed to produce a 5-coloring. On the lower bound side, we show that, for k < 5, and for every prime integer n, no algorithm can k-color the n-node cycle in the asynchronous crash-prone variant of LOCAL, independently from the round-complexities of the algorithms. This lower bound is obtained by reduction from an original extension of the impossibility of solving weak symmetry-breaking in the wait-free shared-memory model. We show that this impossibility still holds even if the processes are provided with inputs susceptible to help breaking symmetry.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • LOCAL model
  • Graph Coloring
  • Renaming
  • Weak Symmetry-Breaking
  • Fault-Tolerance
  • Wait-Free Computing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hagit Attiya and Ami Paz. Counting-based impossibility proofs for set agreement and renaming. J. Parallel Distributed Comput., 87:1-12, 2016. URL: https://doi.org/10.1016/J.JPDC.2015.09.002.
  2. Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and advanced topics. Wiley, 2004. Google Scholar
  3. Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael E. Saks. Adapting to asynchronous dynamic networks. In 24th ACM Symposium on Theory of Computing (STOC), pages 557-570, 1992. Google Scholar
  4. Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead. In 31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 514-522, 1990. URL: https://doi.org/10.1109/FSCS.1990.89572.
  5. Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (δ+ 1)-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In 37superscriptth ACM Symposium on Principles of Distributed Computing (PODC), pages 437-446, 2018. URL: https://dl.acm.org/citation.cfm?id=3212769.
  6. Samuel Bernard, Stéphane Devismes, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In 23rd IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages 1-8, 2009. URL: https://doi.org/10.1109/IPDPS.2009.5161053.
  7. Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm. Theoretical Computer Science, 444:28-39, 2012. URL: https://doi.org/10.1016/J.TCS.2012.01.034.
  8. Lélia Blin, Laurent Feuilloley, and Gabriel Le Bouder. Brief announcement: Memory lower bounds for self-stabilization. In 33rd International Symposium on Distributed Computing (DISC), volume 146 of LIPIcs, pages 37:1-37:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.DISC.2019.37.
  9. Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election - the exponential advantage of being talkative. In 27th Int. Symp. on Distributed Computing (DISC), volume 8205 of LNCS, pages 76-90. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-41527-2_6.
  10. Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput., 292:105035, 2023. URL: https://doi.org/10.1016/J.IC.2023.105035.
  11. Armando Castañeda, Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. Making local algorithms wait-free: the case of ring coloring. Theory of Computing Systems, 63(2):344-365, 2019. URL: https://doi.org/10.1007/S00224-017-9772-Y.
  12. Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms. In 18th ACM Symposium on Theory of Computing (STOC), pages 206-219, 1986. URL: https://doi.org/10.1145/12130.12151.
  13. Carole Delporte-Gallet, Hugues Fauconnier, Pierre Fraigniaud, and Mikaël Rabie. Distributed computing in the asynchronous LOCAL model. In 21st International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS 11914, pages 105-110. Springer, 2019. Google Scholar
  14. P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union ofr others. Israel Journal of Mathematics, 51(1):79-89, 1985. Google Scholar
  15. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.
  16. Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault tolerant coloring of the asynchronous cycle. In 36th Int. Symp. on Distributed Computing (DISC), volume 246 of LIPIcs, pages 23:1-23:22. Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.DISC.2022.23.
  17. Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications. In 37th Int. Symp. on Distributed Computing (DISC), volume 281 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl - Leibniz-Zentrum für Inf., 2023. URL: https://doi.org/10.4230/LIPICS.DISC.2023.22.
  18. Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and without network decomposition. In 62nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 1009-1020, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00101.
  19. Mohsen Ghaffari and Anton Trygub. A near-optimal deterministic distributed synchronizer. In 42th ACM Symposium on Principles of Distributed Computing (PODC), pages 180-189, 2023. URL: https://doi.org/10.1145/3583668.3594598.
  20. Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal distributed degree+1 coloring. In 54th ACM Symposium on Theory of Computing (STOC), pages 450-463, 2022. URL: https://doi.org/10.1145/3519935.3520023.
  21. Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, 2013. Google Scholar
  22. Juho Hirvonen and Jukka Suomela. Distributed Algorithms. Creative Commons, 2020. Google Scholar
  23. Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  24. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. Google Scholar
  25. Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput., 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
  26. Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus under general message adversaries. In 38th ACM Symposium on Principles of Distributed Computing (PODC), pages 218-227, 2019. URL: https://doi.org/10.1145/3293611.3331624.
  27. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000. Google Scholar
  28. Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94141-7.
  29. Nicola Santoro and Peter Widmayer. Time is not a healer. In 6th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 349 of LNCS, pages 304-313. Springer, 1989. URL: https://doi.org/10.1007/BFB0028994.
  30. Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The time complexity of consensus under oblivious message adversaries. In 14th Innovations in Theoretical Computer Science Conference (ITCS), volume 251 of LIPIcs, pages 100:1-100:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ITCS.2023.100.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail