eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-08-18
72:1
72:13
10.4230/LIPIcs.ESA.2016.72
article
New Parameterized Algorithms for APSP in Directed Graphs
Porat, Ely
Shahbazian, Eduard
Tov, Roei
All Pairs Shortest Path (APSP) is a classic problem in graph theory. While for general weighted graphs there is no algorithm that computes APSP in O(n^{3-epsilon}) time (epsilon > 0), by using fast matrix multiplication algorithms, we can compute APSP in O(n^{omega}*log(n)) time (omega < 2.373) for undirected unweighted graphs, and in O(n^{2.5302}) time for directed unweighted graphs. In the current state of matters, there is a substantial gap between the upper bounds of the problem for undirected and directed graphs, and for a long time, it is remained an important open question whether it is possible to close this gap.
In this paper we introduce a new parameter that measures the symmetry of directed graphs (i.e. their closeness to undirected graphs), and obtain a new parameterized APSP algorithm for directed unweighted graphs, that generalizes Seidel's O(n^{omega}*log(n)) time algorithm for undirected unweighted graphs. Given a directed unweighted graph G, unless it is highly asymmetric, our algorithms can compute APSP in o(n^{2.5}) time for G, providing for such graphs a faster APSP algorithm than the state-of-the-art algorithms for the problem.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol057-esa2016/LIPIcs.ESA.2016.72/LIPIcs.ESA.2016.72.pdf
Graphs
distances
APSP
fast matrix multiplication