The Power of Migration for Online Slack Scheduling
We investigate the power of migration in online scheduling for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. Once we decide to accept a job, we have to complete it before its deadline d that satisfies d >= (1+epsilon)p + r, where p is the processing time, r the submission time and the slack epsilon > 0 a system parameter. Typically, the hard case arises for small slack epsilon << 1, i.e. for near-tight deadlines. Without migration, a greedy acceptance policy is known to be an optimal deterministic online algorithm with a competitive factor of (1+epsilon)/epsilon (DasGupta and Palis, APPROX 2000). Our first contribution is to show that migrations do not improve the competitive ratio of the greedy acceptance policy, i.e. the competitive ratio remains (1+epsilon)/epsilon for any number of machines.
Our main contribution is a deterministic online algorithm with almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound of (1+epsilon)/epsilon of the greedy acceptance policy. The competitive ratio improves with an increasing number of machines. It approaches (1+epsilon) ln((1+epsilon)/epsilon) as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small epsilon. Moreover, we show a matching lower bound on the competitive ratio for deterministic algorithms on any number of machines.
Online scheduling
deadlines
preemption with migration
competitive analysis
75:1-75:17
Regular Paper
Chris
Schwiegelshohn
Chris Schwiegelshohn
Uwe
Schwiegelshohn
Uwe Schwiegelshohn
10.4230/LIPIcs.ESA.2016.75
S. Albers and M. Hellwig. On the value of job migration in online makespan minimization. In Proc. of ESA, pages 84-95, 2012.
J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based restricted-migration scheduling algorithm for multiprocessor soft real-time systems. Real-Time Systems, 38(2):85-131, 2008.
S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. Shasha, and F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time Systems, 4(2):125-144, 1992.
S.K. Baruah and J.R. Haritsa. Scheduling for overload in real-time systems. IEEE Trans. Computers, 46(9):1034-1039, 1997.
P. Brucker and S. Knust. Complexity results for scheduling problems. http://www2.informatik.uni-osnabrueck.de/knust/class/, 2009. [Online; accessed 11-April-2016].
http://www2.informatik.uni-osnabrueck.de/knust/class/
B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling. Oper. Res. Lett., 18(3):127-131, 1995.
B. DasGupta and M.A. Palis. Online real-time preemptive scheduling of jobs with deadlines on multiple machines. Journal of Scheduling, 4(6):297-312, 2001.
R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv., 43(4):35, 2011.
L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica, 69(1):26-57, 2014.
S.A. Goldman, J. Parwatikar, and S. Suri. Online scheduling with hard deadlines. Journal of Algorithms, 34(2):370-389, 2000.
M.H. Goldwasser. Patience is a virtue: the effect of slack on competitiveness for admission control. In Proc. of SODA, pages 396-405, 1999.
M.E. Hussein and U. Schwiegelshohn. Utilization of nonclairvoyant online schedules. Theor. Comput. Sci., 362(1-3):238-247, 2006.
B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor scheduling. J. Algorithms, 38(1):2-24, 2001.
B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. J. Algorithms, 49(1):63-85, 2003.
T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM Journal on Computing, 15(4):1119-1129, 1986.
J.H. Kim and K.Y. Chwa. On-line deadline scheduling on multiple resources. In Proc. of COCOON, pages 443-452, 2001.
G. Koren and D. Shasha. MOCA: A multiprocessor on-line competitive algorithm for real-time system scheduling. Theor. Comput. Sci., 128(1&2):75-97, 1994.
E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs. Annals of Operations Research, 26(1):125-133, 1990.
J. Lee. Online deadline scheduling: multiple machines and randomization. In Proc. of SPAA, pages 19-23, 2003.
R.J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of SODA, pages 302-311, 1994.
M.L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Science+Business Media, forth edition, 2010.
P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration. Math. Oper. Res., 34(2):481-498, 2009.
U. Schwiegelshohn. An alternative proof of the Kawaguchi-Kyan bound for the Largest-Ratio-First rule. Oper. Res. Lett., 39(4):255-259, 2011. URL: http://dx.doi.org/10.1016/j.orl.2011.06.007.
http://dx.doi.org/10.1016/j.orl.2011.06.007
M. Skutella and J. Verschae. A robust PTAS for machine covering and packing. In Proc. of ESA, pages 36-47, 2010. URL: http://dx.doi.org/10.1007/978-3-642-15775-2_4.
http://dx.doi.org/10.1007/978-3-642-15775-2_4
B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster. Virtual infrastructure management in private and hybrid clouds. IEEE Internet Computing, 13(5):14-22, 2009.
P. Valente and G. Lipari. An upper bound to the lateness of soft real-time tasks scheduled by EDF on multiprocessors. In Proc. of RTSS, pages 311-320, 2005.
G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor. Comput. Sci., 130(1):5-16, 1994.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode