In the Tricolored Euclidean Traveling Salesperson problem, we are given k = 3 sets of points in the plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave a PTAS based on "patching" for the case k = 1 and, recently, Dross et al. (2023) generalized this result to k = 2. Our contribution is a (5/3+ε)-approximation algorithm for k = 3 that further generalizes Arora’s approach. It is believed that patching is generally no longer possible for more than two tours. We circumvent this issue by either applying a conditional patching scheme for three tours or using an alternative approach based on a weighted solution for k = 2.