Even Faster Knapsack via Rectangular Monotone Min-Plus Convolution and Balancing

Authors Karl Bringmann , Anita Dürr , Adam Polak



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.33.pdf
  • Filesize: 0.81 MB
  • 15 pages

Document Identifiers

Author Details

Karl Bringmann
  • Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Anita Dürr
  • Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Adam Polak
  • Bocconi University, Milan, Italy

Acknowledgements

The authors thank Alejandro Cassis for many fruitful discussions.

Cite AsGet BibTex

Karl Bringmann, Anita Dürr, and Adam Polak. Even Faster Knapsack via Rectangular Monotone Min-Plus Convolution and Balancing. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.33

Abstract

We present a pseudopolynomial-time algorithm for the Knapsack problem that has running time Õ(n + t√{p_{max}}), where n is the number of items, t is the knapsack capacity, and p_{max} is the maximum item profit. This improves over the Õ(n + t p_{max})-time algorithm based on the convolution and prediction technique by Bateni et al. (STOC 2018). Moreover, we give some evidence, based on a strengthening of the Min-Plus Convolution Hypothesis, that our running time might be optimal. Our algorithm uses two new technical tools, which might be of independent interest. First, we generalize the Õ(n^{1.5})-time algorithm for bounded monotone min-plus convolution by Chi et al. (STOC 2022) to the rectangular case where the range of entries can be different from the sequence length. Second, we give a reduction from general knapsack instances to balanced instances, where all items have nearly the same profit-to-weight ratio, up to a constant factor. Using these techniques, we can also obtain algorithms that run in time Õ(n + OPT√{w_{max}}), Õ(n + (nw_{max}p_{max})^{1/3}t^{2/3}), and Õ(n + (nw_{max}p_{max})^{1/3} OPT^{2/3}), where OPT is the optimal total profit and w_{max} is the maximum item weight.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • 0-1-Knapsack problem
  • bounded monotone min-plus convolution
  • fine-grained complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987. URL: https://doi.org/10.1007/BF01840359.
  2. Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack and graph algorithms. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 19:1-19:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.19.
  3. MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein. Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1269-1282. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188876.
  4. Richard Bellman. Notes on the theory of dynamic programming IV - maximization over discrete sets. Naval Research Logistics Quarterly, 3(1-2):67-70, March 1956. URL: https://doi.org/10.1002/nav.3800030107.
  5. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1073-1084. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.69.
  6. Karl Bringmann. Knapsack with small items in near-quadratic time. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 259-270. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649719.
  7. Karl Bringmann and Alejandro Cassis. Faster knapsack algorithms via bounded monotone min-plus-convolution. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 31:1-31:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.31.
  8. Karl Bringmann and Alejandro Cassis. Faster 0-1-knapsack via near-convex min-plus-convolution. In 31st Annual European Symposium on Algorithms, ESA 2023, volume 274 of LIPIcs, pages 24:1-24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.24.
  9. Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 31-40. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746568.
  10. Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Faster algorithms for bounded knapsack and bounded subset sum via fine-grained proximity results. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, pages 4828-4848. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.171.
  11. Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for monotone instances. In STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1529-1542. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520057.
  12. Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. URL: https://doi.org/10.1145/3293465.
  13. Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.org/gb/knowledge/isbn/item2327542/.
  14. Qizheng He and Zhean Xu. Simple and faster algorithms for knapsack. In 2024 Symposium on Simplicity in Algorithms, SOSA 2024, pages 56-62. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977936.6.
  15. Ce Jin. Solving knapsack with small items via L0-proximity. CoRR, abs/2307.09454, 2023. https://arxiv.org/abs/2307.09454, URL: https://doi.org/10.48550/arXiv.2307.09454.
  16. Ce Jin. 0-1 knapsack in nearly quadratic time. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 271-282. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649618.
  17. Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on the Complexity of Computer Computations, 1972, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  18. Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5-11, 2004. URL: https://doi.org/10.1023/B:JOCO.0000021934.29833.6B.
  19. Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-24777-7.
  20. Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity of one-dimensional dynamic programming. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPICS.ICALP.2017.21.
  21. David Pisinger. Linear time algorithms for knapsack problems with bounded weights. J. Algorithms, 33(1):1-14, 1999. URL: https://doi.org/10.1006/JAGM.1999.1034.
  22. Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and subset sum with small items. In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 106:1-106:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.106.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail