A bipartite tournament is a directed graph T:=(A cup B, E) such that every pair of vertices (a,b), a in A, b in B are connected by an arc, and no arc connects two vertices of A or two vertices of B. A feedback vertex set is a set S of vertices in T such that T - S is acyclic. In this article we consider the Feedback Vertex Set problem in bipartite tournaments. Here the input is a bipartite tournament T on n vertices together with an integer k, and the task is to determine whether T has a feedback vertex set of size at most k. We give a new algorithm for Feedback Vertex Set in Bipartite Tournaments. The running time of our algorithm is upper-bounded by O(1.6181^k + n^{O(1)}), improving over the previously best known algorithm with running time (2^k)k^{O(1)} + n^{O(1)} [Hsiao, ISAAC 2011]. As a by-product, we also obtain the fastest currently known exact exponential-time algorithm for the problem, with running time O(1.3820^n).