Learning Partitions Using Rank Queries

Authors Deeparnab Chakrabarty , Hang Liao



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.16.pdf
  • Filesize: 0.82 MB
  • 14 pages

Document Identifiers

Author Details

Deeparnab Chakrabarty
  • Dartmouth College, Hanover, NH, USA
Hang Liao
  • Dartmouth College, Hanover, NH, USA

Cite As Get BibTex

Deeparnab Chakrabarty and Hang Liao. Learning Partitions Using Rank Queries. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.16

Abstract

We consider the problem of learning an unknown partition of an n element universe using rank queries. Such queries take as input a subset of the universe and return the number of parts of the partition it intersects. We give a simple O(n)-query, efficient, deterministic algorithm for this problem. We also generalize to give an O(n + klog r)-rank query algorithm for a general partition matroid where k is the number of parts and r is the rank of the matroid.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming, sublinear and near linear time algorithms
Keywords
  • Query Complexity
  • Hypergraph Learning
  • Matroids

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Martin Aigner. Combinatorial search. John Wiley & Sons, Inc., 1988. Google Scholar
  2. Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering using same-cluster queries. In Proc., Latin American Theoretical Informatics Symposium, pages 14-27, 2018. URL: https://doi.org/10.1007/978-3-319-77404-6_2.
  3. Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathematics (SIDMA), 18(4):697-712, 2005. URL: https://doi.org/10.1137/S0895480103431071.
  4. Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a hidden matching. SIAM Journal on Computing (SICOMP), 33(2):487-501, 2004. URL: https://doi.org/10.1137/S0097539702420139.
  5. Dana Angluin and Jiang Chen. Learning a hidden hypergraph. In Proc., Conf. on Learning Theory (COLT), pages 561-575. Springer, 2005. URL: https://doi.org/10.1007/11503415_38.
  6. Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay, and Danupon Nanongkai. Cut query algorithms with star contraction. Proc., IEEE Conference on the Foundations of Computer Science (FOCS), 2022. Google Scholar
  7. Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 29, 2016. Google Scholar
  8. Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries. arXiv preprint arXiv:2109.02115, 2021. URL: https://arxiv.org/abs/2109.02115.
  9. Eric Balkanski, Oussama Hanguir, and Shatian Wang. Learning low degree hypergraphs. In Proc., Conf. on Learning Theory (COLT), pages 419-420. PMLR, 2022. URL: https://proceedings.mlr.press/v178/balkanski22a.html.
  10. Joakim Blikstad. Breaking O(nr) for Matroid Intersection. In Proc., International Conference on Algorithms, Logic, and Programming (ICALP), pages 31:1-31:17, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.31.
  11. Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast algorithms via dynamic-oracle matroids. In Proc., ACM Symposium on the Theory of Computing (STOC), pages 1229-1242, 2023. URL: https://doi.org/10.1145/3564246.3585219.
  12. Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. On margin-based cluster recovery with oracle queries. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), pages 25231-25243, 2021. Google Scholar
  13. Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In Proc., Conf. on Learning Theory (COLT), 2009. Google Scholar
  14. Nader H. Bshouty and Hanna Mazzawi. Optimal Query Complexity for Reconstructing Hypergraphs. In Proc., Symposium on the Theoretical Aspects of Computer Science (STACS), pages 143-154, 2010. URL: https://doi.org/10.4230/LIPICS.STACS.2010.2496.
  15. Nader H. Bshouty and Hanna Mazzawi. Algorithms for the coin weighing problems with the presence of noise. Electron. Colloquium Comput. Complex., page 124, 2011. URL: https://eccc.weizmann.ac.il/report/2011/124, URL: https://arxiv.org/abs/TR11-124.
  16. Nader H. Bshouty and Hanna Mazzawi. On parity check (0, 1)-matrix over ℤ_p. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1383-1394, 2011. Google Scholar
  17. Nader H. Bshouty and Hanna Mazzawi. Toward a deterministic polynomial time algorithm with optimal additive query complexity. Theoretical Computer Science, 417:23-35, 2012. URL: https://doi.org/10.1016/J.TCS.2011.09.005.
  18. David G. Cantor and W. H. Mills. Determination of a subset from certain combinatorial properties. Canadian Journal of Mathematics, 18:42-48, 1966. Google Scholar
  19. Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong. Faster matroid intersection. In Proc., IEEE Conference on the Foundations of Computer Science (FOCS), pages 1146-1168, 2019. URL: https://doi.org/10.1109/FOCS.2019.00072.
  20. Deeparnab Chakrabarty and Hang Liao. A query algorithm for learning a spanning forest in weighted undirected graphs. In Proc., International Conference on Algorithmic Learning Theory (ALT), pages 259-274, 2023. URL: https://proceedings.mlr.press/v201/chakrabarty23a.html.
  21. I Eli Chien, Huozhi Zhou, and Pan Li. hs²: Active learning over hypergraphs with pointwise and pairwise queries. In Proc., International Conference on Artificial Intelligence and Statistics (AISTATS), pages 2466-2475, 2019. URL: http://proceedings.mlr.press/v89/chien19a.html.
  22. Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary real weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, Proc., Conf. on Learning Theory (COLT), volume 30, pages 797-818, 2013. URL: http://proceedings.mlr.press/v30/Choi13.html.
  23. Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs. Artif. Intell., 174(9-10):551-569, 2010. URL: https://doi.org/10.1016/J.ARTINT.2010.02.003.
  24. Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with noisy comparisons. ACM Transactions on Database Systems (TODS), 39(4):1-39, 2014. URL: https://doi.org/10.1145/2684066.
  25. Dingzhu Du and Frank K Hwang. Combinatorial group testing and its applications, volume 12. World Scientific, 2000. Google Scholar
  26. Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial Structures and their Applications, 18:69-87, 1970. Google Scholar
  27. Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg. New query lower bounds for submodular function minimization. Proc., Innovations in Theoretical Computer Science (ITCS), page 64, 2020. Google Scholar
  28. Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the additive model. Algorithmica, 28(1):104-124, 2000. URL: https://doi.org/10.1007/S004530010033.
  29. Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems with cut queries. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 939-958, 2021. URL: https://doi.org/10.1137/1.9781611976465.59.
  30. Hang Liao and Deeparnab Chakrabarty. Learning spanning forests optimally in weighted undirected graphs with cut queries. In Proc., International Conference on Algorithmic Learning Theory (ALT), 2024. Google Scholar
  31. Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathematical Bulletin, 8(4):477-490, 1965. Google Scholar
  32. Xizhi Liu and Sayan Mukherjee. Tight query complexity bounds for learning graph partitions. In Proc., Conf. on Learning Theory (COLT), pages 167-181. PMLR, 2022. URL: https://proceedings.mlr.press/v178/liu22a.html.
  33. Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 2017. Google Scholar
  34. Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 608-615, 2010. URL: https://doi.org/10.1137/1.9781611973075.51.
  35. Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus on edge counting. In Proc., International Conference on Algorithmic Learning Theory (ALT), pages 285-297. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-75225-7_24.
  36. Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts without knowing the graph. In Proc., Innovations in Theoretical Computer Science (ITCS), pages 39:1-39:16, 2018. URL: https://doi.org/10.4230/LIPICS.ITCS.2018.39.
  37. Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries bounded by optimal cost. In Proc., European Symposium on Algorithms, pages 81:1-81:17, 2019. URL: https://doi.org/10.4230/LIPICS.ESA.2019.81.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail