Maximizing Phylogenetic Diversity Under Ecological Constraints: A Parameterized Complexity Study

Authors Christian Komusiewicz , Jannik Schestag



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.28.pdf
  • Filesize: 0.79 MB
  • 18 pages

Document Identifiers

Author Details

Christian Komusiewicz
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany
Jannik Schestag
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany

Cite As Get BibTex

Christian Komusiewicz and Jannik Schestag. Maximizing Phylogenetic Diversity Under Ecological Constraints: A Parameterized Complexity Study. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.28

Abstract

In the NP-hard Optimizing Phylogenetic Diversity with Dependencies(PDD) problem, the input consists of a phylogenetic tree 𝒯 over a set of taxa X, a food-web that describes the prey-predator relationships in X, and integers k and D. The task is to find a set S of k species that is viable in the food-web such that the subtree of 𝒯 obtained by retaining only the vertices of S has total edge weight at least D. Herein, viable means that for every predator taxon of S, the set S contains at least one prey taxon.
We provide the first systematic analysis of PDD and its special case with star trees, s-PDD, from a parameterized complexity perspective. For solution-size related parameters, we show that PDD is fixed-parameter tractable (FPT) with respect to D and with respect to k plus the height of the phylogenetic tree. Moreover, we consider structural parameterizations of the food-web. For example, we show an FPT-algorithm for the parameter that measures the vertex deletion distance to graphs where every connected component is a complete graph. Finally, we show that s-PDD admits an FPT-algorithm for the treewidth of the food-web. This disproves, unless P = NP, a conjecture of Faller et al. [Annals of Combinatorics, 2011] who conjectured that s-PDD is NP-hard even when the food-web is a tree.

Subject Classification

ACM Subject Classification
  • Applied computing → Computational biology
  • Theory of computation → Fixed parameter tractability
Keywords
  • phylogenetic diversity
  • food-webs
  • structural parameterization
  • color-coding
  • dynamic programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844-856, 1995. URL: https://doi.org/10.1145/210332.210337.
  2. Terry Beyer and Sandra Mitchell Hedetniemi. Constant time generation of rooted trees. SIAM Journal on Computing, 9(4):706-712, 1980. URL: https://doi.org/10.1137/0209055.
  3. Magnus Bordewich, Charles Semple, and Kristina Wicke. On the complexity of optimising variants of phylogenetic diversity on phylogenetic networks. Theoretical Computer Science, 917:66-80, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.012.
  4. Alyssa R. Cirtwill, Giulio Valentino Dalla Riva, Marilia P. Gaiarsa, Malyon D. Bimler, E. Fernando Cagua, Camille Coux, and D. Matthias Dehling. A review of species role concepts in food webs. Food Webs, 16:e00093, 2018. Google Scholar
  5. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  6. Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109-131, 1995. URL: https://doi.org/10.1016/0304-3975(94)00097-3.
  7. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  8. Wolfgang Dvorák, Monika Henzinger, and David P. Williamson. Maximizing a submodular function with viability constraints. Algorithmica, 77(1):152-172, 2017. URL: https://doi.org/10.1007/S00453-015-0066-Y.
  9. Daniel P. Faith. Conservation evaluation and Phylogenetic Diversity. Biological Conservation, 61(1):1-10, 1992. Google Scholar
  10. Beáta Faller, Charles Semple, and Dominic Welsh. Optimizing Phylogenetic Diversity with Ecological Constraints. Annals of Combinatorics, 15(2):255-266, 2011. Google Scholar
  11. Pille Gerhold, James F Cahill Jr, Marten Winter, Igor V Bartish, and Andreas Prinzing. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5):600-614, 2015. Google Scholar
  12. Klaas Hartmann and Mike Steel. Maximizing phylogenetic diversity in biodiversity conservation: Greedy solutions to the Noah’s Ark problem. Systematic Biology, 55(4):644-651, 2006. Google Scholar
  13. Nick JB Isaac, Samuel T Turvey, Ben Collen, Carly Waterman, and Jonathan EM Baillie. Mammals on the edge: conservation priorities based on threat and phylogeny. PloS one, 2(3):e296, 2007. Google Scholar
  14. Mark Jones and Jannik Schestag. How can we maximize phylogenetic diversity? Parameterized approaches for networks. In Proceedings of the 18th International Symposium on Parameterized and Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 30:1-30:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.30.
  15. Mark Jones and Jannik Schestag. Maximizing Phylogenetic Diversity under Time Pressure: Planning with Extinctions Ahead. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2403.14217.
  16. Christian Komusiewicz and Jannik Schestag. A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem. In Proceedings of the 19th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW '23), volume 13 of AIRO, pages 109-121. Springer, 2023. Google Scholar
  17. Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dynamics on graphs. Nature, 433(7023):312-316, 2005. Google Scholar
  18. Florent Mazel, Matthew W Pennell, Marc W Cadotte, Sandra Diaz, Giulio Valentino Dalla Riva, Richard Grenyer, Fabien Leprieur, Arne O Mooers, David Mouillot, Caroline M Tucker, et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 9(1):2888, 2018. Google Scholar
  19. Bui Quang Minh, Steffen Klaere, and Arndt von Haeseler. Phylogenetic Diversity within Seconds. Systematic Biology, 55(5):769-773, October 2006. Google Scholar
  20. Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory, Series B, 82(1):102-117, 2001. URL: https://doi.org/10.1006/JCTB.2000.2026.
  21. Vincent Moulton, Charles Semple, and Mike Steel. Optimizing phylogenetic diversity under constraints. Journal of Theoretical Biology, 246(1):186-194, 2007. Google Scholar
  22. Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS '95), pages 182-191. IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SFCS.1995.492475.
  23. Fabio Pardi and Nick Goldman. Species Choice for Comparative Genomics: Being Greedy Works. PLoS Genetics, 1, 2005. Google Scholar
  24. Fabio Pardi and Nick Goldman. Resource-aware taxon selection for maximizing phylogenetic diversity. Systematic Biology, 56(3):431-444, 2007. Google Scholar
  25. Peter W Shor. A new proof of Cayley’s formula for counting labeled trees. Journal of Combinatorial Theory, Series A, 71(1):154-158, 1995. Google Scholar
  26. Andreas Spillner, Binh T. Nguyen, and Vincent Moulton. Computing phylogenetic diversity for split systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5(2):235-244, 2008. URL: https://doi.org/10.1109/TCBB.2007.70260.
  27. Mike Steel. Phylogenetic Diversity and the greedy algorithm. Systematic Biology, 54(4):527-529, 2005. Google Scholar
  28. Leo van Iersel, Mark Jones, Jannik Schestag, Celine Scornavacca, and Mathias Weller. Maximizing network phylogenetic diversity. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2405.01091.
  29. Kristina Wicke and Mareike Fischer. Phylogenetic Diversity and biodiversity indices on Phylogenetic Networks. Mathematical Biosciences, 298:80-90, 2018. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail