LIPIcs.FSTTCS.2024.28.pdf
- Filesize: 0.79 MB
- 18 pages
In the NP-hard Optimizing Phylogenetic Diversity with Dependencies(PDD) problem, the input consists of a phylogenetic tree 𝒯 over a set of taxa X, a food-web that describes the prey-predator relationships in X, and integers k and D. The task is to find a set S of k species that is viable in the food-web such that the subtree of 𝒯 obtained by retaining only the vertices of S has total edge weight at least D. Herein, viable means that for every predator taxon of S, the set S contains at least one prey taxon. We provide the first systematic analysis of PDD and its special case with star trees, s-PDD, from a parameterized complexity perspective. For solution-size related parameters, we show that PDD is fixed-parameter tractable (FPT) with respect to D and with respect to k plus the height of the phylogenetic tree. Moreover, we consider structural parameterizations of the food-web. For example, we show an FPT-algorithm for the parameter that measures the vertex deletion distance to graphs where every connected component is a complete graph. Finally, we show that s-PDD admits an FPT-algorithm for the treewidth of the food-web. This disproves, unless P = NP, a conjecture of Faller et al. [Annals of Combinatorics, 2011] who conjectured that s-PDD is NP-hard even when the food-web is a tree.
Feedback for Dagstuhl Publishing