A Quadratic Upper Bound on the Reset Thresholds of Synchronizing Automata Containing a Transitive Permutation Group

Author Yinfeng Zhu



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.34.pdf
  • Filesize: 0.74 MB
  • 14 pages

Document Identifiers

Author Details

Yinfeng Zhu
  • Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

Acknowledgements

I thank Prof. Mikhail V. Volkov for valuable discussions, feedback and research suggestions.

Cite As Get BibTex

Yinfeng Zhu. A Quadratic Upper Bound on the Reset Thresholds of Synchronizing Automata Containing a Transitive Permutation Group. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.34

Abstract

For any synchronizing n-state deterministic automaton, Černý conjectures the existence of a synchronizing word of length at most (n-1)². We prove that there exists a synchronizing word of length at most 2n² - 7n + 7 for every synchronizing n-state deterministic automaton that satisfies the following two properties: 1. The image of the action of each letter contains at least n-1 states; 2. The actions of bijective letters generate a transitive permutation group on the state set.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • Černý conjecture
  • deterministic finite automaton
  • permutation group
  • reset threshold
  • synchronizing automaton

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. João Araújo, Peter J. Cameron, and Benjamin Steinberg. Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci., 4(2):101-184, 2017. URL: https://doi.org/10.4171/EMSS/4-2-1.
  2. Norman Biggs. Algebraic graph theory, volume No. 67 of Cambridge Tracts in Mathematics. Cambridge University Press, London, 1974. URL: https://doi.org/10.1017/CBO9780511608704.
  3. Eugenija A. Bondar, David Casas, and Mikhail V. Volkov. Completely reachable automata: an interplay between automata, graphs, and trees. Internat. J. Found. Comput. Sci., 34(6):655-690, 2023. URL: https://doi.org/10.1142/s0129054123450053.
  4. Eugenija A. Bondar and Mikhail V. Volkov. Completely reachable automata. In Descriptional complexity of formal systems, volume 9777 of Lecture Notes in Comput. Sci., pages 1-17. Springer, [Cham], 2016. URL: https://doi.org/10.1007/978-3-319-41114-9_1.
  5. Ján Černý. A remark on homogeneous experiments with finite automata. Mat.-Fyz. Časopis. Sloven. Akad. Vied., 14:208-216, 1964. Google Scholar
  6. Ján Černý, Alica Pirická, and Blanka Rosenauerová. On directable automata. Kybernetika (Prague), 7:289-298, 1971. URL: http://www.kybernetika.cz/content/1971/4/289.
  7. L. Dubuc. Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Théor. Appl., 32(1-3):21-34, 1998. URL: https://doi.org/10.1051/ita/1998321-300211.
  8. Robert Ferens and Marek Szykuła. Completely Reachable Automata: A Polynomial Algorithm and Quadratic Upper Bounds. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1-59:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.59.
  9. P. Frankl. An extremal problem for two families of sets. European J. Combin., 3(2):125-127, 1982. URL: https://doi.org/10.1016/S0195-6698(82)80025-5.
  10. François Gonze, Vladimir V. Gusev, Raphaël M. Jungers, Balázs Gerencsér, and Mikhail V. Volkov. On the interplay between Černý and Babai’s conjectures. Internat. J. Found. Comput. Sci., 30(1):93-114, 2019. URL: https://doi.org/10.1142/S0129054119400057.
  11. Jarkko Kari. Synchronizing finite automata on Eulerian digraphs. In Mathematical foundations of computer science, 2001 (Mariánské Láznĕ), volume 2136 of Lecture Notes in Comput. Sci., pages 432-438. Springer, Berlin, 2001. URL: https://doi.org/10.1007/3-540-44683-4_38.
  12. Jarkko Kari and Mikhail Volkov. Černý’s conjecture and the road colouring problem. In Handbook of Automata Theory. Vol. I. Theoretical Foundations, pages 525-565. EMS Press, Berlin, 2021. URL: https://doi.org/10.4171/AUTOMATA-1/15.
  13. Andrzej Kisielewicz, Jakub Kowalski, and Marek Szykuła. Experiments with synchronizing automata. In Implementation and application of automata, volume 9705 of Lecture Notes in Comput. Sci., pages 176-188. Springer, [Cham], 2016. URL: https://doi.org/10.1007/978-3-319-40946-7_15.
  14. J.-E. Pin. On two combinatorial problems arising from automata theory. In Combinatorial mathematics (Marseille-Luminy, 1981), volume 75 of North-Holland Math. Stud., pages 535-548. North-Holland, Amsterdam, 1983. URL: https://doi.org/10.1016/S0304-0208(08)73432-7.
  15. Jakub Ruszil. Synchronizing automata with coinciding cycles. In Developments in language theory, volume 13911 of Lecture Notes in Comput. Sci., pages 208-218. Springer, Cham, 2023. URL: https://doi.org/10.1007/978-3-031-33264-7_17.
  16. I. K. Rystsov. Quasioptimal bound for the length of reset words for regular automata. Acta Cybernet., 12(2):145-152, 1995. URL: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3453.
  17. I. K. Rystsov. On the length of reset words for automata with simple idempotents. Kibernet. Sistem. Anal., 36(3):32-39, 187, 2000. URL: https://doi.org/10.1007/BF02732984.
  18. I. K. Rystsov. On the Cerny problem for automata with simple idempotents. Kibernet. Sistem. Anal., 58(1):3-10, 2022. Google Scholar
  19. Igor Rystsov and Marek Szykuła. Reset thresholds of transformation monoids. Cybernetics and Systems Analysis, pages 1-9, 2024. URL: https://doi.org/10.1007/s10559-024-00660-z.
  20. Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words of finite automata. J. Autom. Lang. Comb., 24(2-4):367-373, 2019. URL: https://doi.org/10.15388/na.2019.3.3.
  21. P. H. Starke. Eine Bemerkung über homogene Experimente. Elektron. Informationsverarbeitung Kybernetik, 2:257-259, 1966. Google Scholar
  22. Benjamin Steinberg. Černý’s conjecture and group representation theory. J. Algebraic Combin., 31(1):83-109, 2010. URL: https://doi.org/10.1007/s10801-009-0185-0.
  23. Benjamin Steinberg. The černý conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci., 412(39):5487-5491, 2011. URL: https://doi.org/10.1016/j.tcs.2011.06.012.
  24. Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 56:1-56:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.56.
  25. A. N. Trahtman. The Černý conjecture for aperiodic automata. Discrete Math. Theor. Comput. Sci., 9(2):3-10, 2007. URL: https://doi.org/10.46298/dmtcs.395.
  26. M. V. Volkov. Synchronizing automata preserving a chain of partial orders. Theoret. Comput. Sci., 410(37):3513-3519, 2009. URL: https://doi.org/10.1016/j.tcs.2009.03.021.
  27. M. V. Volkov. Synchronization of finite automata. Russian Mathematical Surveys, 77(5):819-891, 2022. URL: https://doi.org/10.4213/rm10005e.
  28. A. Yu. Zubov. On the diameter of the group S_N with respect to a system of generators consisting of a complete cycle and a transposition. In Proceedings in discrete mathematics, Vol. 2 (Russian), volume 2 of Tr. Diskretn. Mat., pages 112-150. Nauchn. Izd. TVP, Moscow, 1998. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail