eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-08-23
69:1
69:15
10.4230/LIPIcs.ICALP.2016.69
article
Approximation Algorithms for Clustering Problems with Lower Bounds and Outliers
Ahmadian, Sara
Swamy, Chaitanya
We consider clustering problems with non-uniform lower bounds and outliers, and obtain the first approximation guarantees for these problems. We have a set F of facilities with lower bounds {L_i}_{i in F} and a set D of clients located in a common metric space {c(i,j)}_{i,j in F union D}, and bounds k, m. A feasible solution is a pair (S subseteq F, sigma: D -> S union {out}), where sigma specifies the client assignments, such that |S| <=k, |sigma^{-1}(i)| >= L_i for all i in S, and |sigma^{-1}(out)| <= m. In the lower-bounded min-sum-of-radii with outliers P (LBkSRO) problem, the objective is to minimize sum_{i in S} max_{j in sigma^{-1})i)}, and in the lower-bounded k-supplier with outliers (LBkSupO) problem, the objective is to minimize max_{i in S} max_{j in sigma^{-1})i)} c(i,j).
We obtain an approximation factor of 12.365 for LBkSRO, which improves to 3.83 for the non-outlier version (i.e., m = 0). These also constitute the first approximation bounds for the min-sum-of-radii objective when we consider lower bounds and outliers separately. We apply the primal-dual method to the relaxation where we Lagrangify the |S| <= k constraint. The chief technical contribution and novelty of our algorithm is that, departing from the standard paradigm used for such constrained problems, we obtain an O(1)-approximation despite the fact that we do not obtain a Lagrangian-multiplier-preserving algorithm for the Lagrangian relaxation. We believe that our ideas have broader applicability to other clustering problems with outliers as well.
We obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier version. These are the first approximation results for k-supplier with non-uniform lower bounds.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol055-icalp2016/LIPIcs.ICALP.2016.69/LIPIcs.ICALP.2016.69.pdf
Approximation algorithms
facililty-location problems
primal-dual method
Lagrangian relaxation
k-center problems
minimizing sum of radii