Improved Reduction from the Bounded Distance Decoding Problem to the Unique Shortest Vector Problem in Lattices
We present a probabilistic polynomial-time reduction from the lattice Bounded Distance Decoding (BDD) problem with parameter 1/( sqrt(2) * gamma) to the unique Shortest Vector Problem (uSVP) with parameter gamma for any gamma > 1 that is polynomial in the lattice dimension n. It improves the BDD to uSVP reductions of [Lyubashevsky and Micciancio, CRYPTO, 2009] and [Liu, Wang, Xu and Zheng, Inf. Process. Lett., 2014], which rely on Kannan's embedding technique. The main ingredient to the improvement is the use of Khot's lattice sparsification [Khot, FOCS, 2003] before resorting to Kannan's embedding, in order to boost the uSVP parameter.
Lattices
Bounded Distance Decoding Problem
Unique Shortest Vector Problem
Sparsification
76:1-76:12
Regular Paper
Shi
Bai
Shi Bai
Damien
Stehlé
Damien Stehlé
Weiqiang
Wen
Weiqiang Wen
10.4230/LIPIcs.ICALP.2016.76
M. Ajtai. The shortest vector problem in l₂ is NP-hard for randomized reductions (extended abstract). In Proc. of STOC, pages 284-293. ACM, 1998.
L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6:1-13, 1986.
S. Bai and S. Galbraith. Private communication, 2015.
D. Dadush and G. Kun. Lattice sparsification and the approximate closest vector problem. In Proc. of SODA, pages 1088-1102. SIAM, 2013.
D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance guarantee. In Proc. of CCC, pages 98-109. IEEE Computer Society Press, 2014.
R. de Buda. The upper error bound of a new near-optimal code. IEEE Trans. on Information Theory, 21(4):441-445, 1975.
U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm. In Proc. of EUROCAL, volume 162 of LNCS, pages 194-202, 1983.
R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proc. of STOC, pages 99-108. ACM, 1983.
R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):415-440, 1987.
S. Khot. Hardness of approximating the shortest vector problem in high L_p norms. In Proc. of FOCS, pages 290-297. IEEE Computer Society Press, 2003.
S. Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM, 52(5):789-808, 2005.
A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann, 261:515-534, 1982.
M. Liu, X. Wang, G. Xu, and X. Zheng. A note on BDD problems with λ₂-gap. Inf. Process. Lett., 114(1-2):9-12, January 2014.
Y. K. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decoding for general lattices. In Proc. of RANDOM, volume 4110 of LNCS, pages 450-461. Springer, 2006.
V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In Proc. of CRYPTO, pages 577-594, 2009.
D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. Comput, 30(6):2008-2035, 2001.
D. Micciancio. Private communication, 2015.
D. Micciancio and S. Goldwasser. Complexity of Lattice problem: A Cryptography Perspective. Kluwer, 2009.
O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), 2009.
C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Science, 53:201-224, 1987.
N. Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP. In Proc. of SODA, pages 1748-1764. SIAM, 2016.
A. Vardy. Algorithmic complexity in coding theory and the minimum distance problem. In Proc. of STOC, pages 92-109. ACM, 1997.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode