We present improved algorithms for solving the All Pairs Non-decreasing Paths (APNP) problem on weighted digraphs. Currently, the best upper bound on APNP is O~(n^{(9+omega)/4})=O(n^{2.844}), obtained by Vassilevska Williams [TALG 2010 and SODA'08], where omega<2.373 is the usual exponent of matrix multiplication. Our first algorithm improves the time bound to O~(n^{2+omega/3})=O(n^{2.791}). The algorithm determines, for every pair of vertices s, t, the minimum last edge weight on a non-decreasing path from s to t, where a non-decreasing path is a path on which the edge weights form a non-decreasing sequence. The algorithm proposed uses the combinatorial properties of non-decreasing paths. Also a slightly improved algorithm with running time O(n^{2.78}) is presented.