Let H be an arbitrary family of hyper-planes in d-dimensions. We show that the point-location problem for H can be solved by a linear decision tree that only uses a special type of queries called generalized comparison queries. These queries correspond to hyperplanes that can be written as a linear combination of two hyperplanes from H; in particular, if all hyperplanes in H are k-sparse then generalized comparisons are 2k-sparse. The depth of the obtained linear decision tree is polynomial in d and logarithmic in |H|, which is comparable to previous results in the literature that use general linear queries.

This extends the study of comparison trees from a previous work by the authors [Kane {et al.}, FOCS 2017]. The main benefit is that using generalized comparison queries allows to overcome limitations that apply for the more restricted type of comparison queries.

Our analysis combines a seminal result of Forster regarding sets in isotropic position [Forster, JCSS 2002], the margin-based inference dimension analysis for comparison queries from [Kane {et al.}, FOCS 2017], and compactness arguments.