eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2019-07-04
133:1
133:12
10.4230/LIPIcs.ICALP.2019.133
article
On Approximate Pure Nash Equilibria in Weighted Congestion Games with Polynomial Latencies
Caragiannis, Ioannis
1
Fanelli, Angelo
2
University of Patras & CTI "Diophantus", Patras, Greece
CNRS (UMR-6211), Caen, France
We consider the problem of the existence of natural improvement dynamics leading to approximate pure Nash equilibria, with a reasonable small approximation, and the problem of bounding the efficiency of such equilibria in the fundamental framework of weighted congestion game with polynomial latencies of degree at most d >= 1. In this work, by exploiting a simple technique, we firstly show that the game always admits a d-approximate potential function. This implies that every sequence of d-approximate improvement moves by the players always leads the game to a d-approximate pure Nash equilibrium. As a corollary, we also obtain that, under mild assumptions on the structure of the players' strategies, the game always admits a constant approximate potential function. Secondly, by using a simple potential function argument, we are able to show that in the game there always exists a (d+delta)-approximate pure Nash equilibrium, with delta in [0,1], whose cost is 2/(1+delta) times the cost of an optimal state.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol132-icalp2019/LIPIcs.ICALP.2019.133/LIPIcs.ICALP.2019.133.pdf
Congestion games
approximate pure Nash equilibrium
potential functions
approximate price of stability