We consider a very wide class of models for sparse random Boolean 2CSPs; equivalently, degree-2 optimization problems over {±1}ⁿ. For each model ℳ, we identify the "high-probability value" s^*_ℳ of the natural SDP relaxation (equivalently, the quantum value). That is, for all ε > 0 we show that the SDP optimum of a random n-variable instance is (when normalized by n) in the range (s^*_ℳ-ε, s^*_ℳ+ε) with high probability. Our class of models includes non-regular CSPs, and ones where the SDP relaxation value is strictly smaller than the spectral relaxation value.