We study three fundamental three-dimensional (3D) geometric packing problems: 3D (Geometric) Bin Packing (3D-BP), 3D Strip Packing (3D-SP), and Minimum Volume Bounding Box (3D-MVBB), where given a set of 3D (rectangular) cuboids, the goal is to find an axis-aligned nonoverlapping packing of all cuboids. In 3D-BP, we need to pack the given cuboids into the minimum number of unit cube bins. In 3D-SP, we need to pack them into a 3D cuboid with a unit square base and minimum height. Finally, in 3D-MVBB, the goal is to pack into a cuboid box of minimum volume. It is NP-hard to even decide whether a set of rectangles can be packed into a unit square bin - giving an (absolute) approximation hardness of 2 for 3D-BP and 3D-SP. The previous best (absolute) approximation for all three problems is by Li and Cheng (SICOMP, 1990), who gave algorithms with approximation ratios of 13, 46/7, and 46/7+ε, respectively, for 3D-BP, 3D-SP, and 3D-MVBB. We provide improved approximation ratios of 6, 6, and 3+ε, respectively, for the three problems, for any constant ε > 0. For 3D-BP, in the asymptotic regime, Bansal, Correa, Kenyon, and Sviridenko (Math. Oper. Res., 2006) showed that there is no asymptotic polynomial-time approximation scheme (APTAS) even when all items have the same height. Caprara (Math. Oper. Res., 2008) gave an asymptotic approximation ratio of T_{∞}² + ε ≈ 2.86, where T_{∞} is the well-known Harmonic constant in Bin Packing. We provide an algorithm with an improved asymptotic approximation ratio of 3 T_{∞}/2 + ε ≈ 2.54. Further, we show that unlike 3D-BP (and 3D-SP), 3D-MVBB admits an APTAS.
@InProceedings{kar_et_al:LIPIcs.ICALP.2025.104, author = {Kar, Debajyoti and Khan, Arindam and Rau, Malin}, title = {{Improved Approximation Algorithms for Three-Dimensional Bin Packing}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {104:1--104:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.104}, URN = {urn:nbn:de:0030-drops-234814}, doi = {10.4230/LIPIcs.ICALP.2025.104}, annote = {Keywords: Approximation Algorithms, Geometric Packing, Multidimensional Packing} }
Feedback for Dagstuhl Publishing