On the Expressive Power of Query Languages for Matrices
We investigate the expressive power of MATLANG, a formal language for matrix manipulation based on common matrix operations and linear algebra. The language can be extended with the operation inv of inverting a matrix. In MATLANG + inv we can compute the transitive closure of directed graphs, whereas we show that this is not possible without inversion. Indeed we show that the basic language can be simulated in the relational algebra with arithmetic operations, grouping, and summation. We also consider an operation eigen for diagonalizing a matrix, which is defined so that different eigenvectors returned for a same eigenvalue are orthogonal. We show that inv can be expressed in MATLANG + eigen. We put forward the open question whether there are boolean queries about matrices, or generic queries about graphs, expressible in MATLANG + eigen but not in MATLANG + inv. The evaluation problem for MATLANG + eigen is shown to be complete for the complexity class Exists R.
matrix query languages
relational algebra with aggregates
query evaluation problem
graph queries
10:1-10:17
Regular Paper
Robert
Brijder
Robert Brijder
Floris
Geerts
Floris Geerts
Jan
Van den Bussche
Jan Van den Bussche
Timmy
Weerwag
Timmy Weerwag
10.4230/LIPIcs.ICDT.2018.10
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
D.S. Arnon. Geometric reasoning with logic and algebra. Artificial Intelligence, 37:37-60, 1988.
S. Axler. Linear Algebra Done Right. Springer, third edition, 2015.
S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, second edition, 2008.
M. Boehm, M.W. Dusenberry, D. Eriksson, A.V. Evfimievski, F.M. Manshadi, N. Pansare, B. Reinwald, F.R. Reiss, P. Sen, A.C. Surve, and S. Tatikonda. SystemML: Declarative machine learning on Spark. Proceedings of the VLDB Endowment, 9(13):1425-1436, 2016.
A. Bonato. A Course on the Web Graph, volume 89 of Graduate Studies in Mathematics. American Mathematical Society, 2008.
S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30:107-117, 1998.
L. Chen, A. Kumar, J. Naughton, and J.M. Patel. Towards linear algebra over normalized data. Proceedings of the VLDB Endowment, 10(11):1214-1225, 2017.
S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. Reachability is in DynFO. In M.M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, Proceedings 42nd International Colloquium on Automata, Languages and Programming, Part II, volume 9135 of Lecture Notes in Computer Science, pages 159-170. Springer, 2015.
A. Dawar. On the descriptive complexity of linear algebra. In W. Hodges and R. de Queiroz, editors, Logic, Language, Information and Computation, Proceedings 15th WoLLIC, volume 5110 of Lecture Notes in Computer Science, pages 17-25. Springer, 2008.
A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In Proceedings 24th Annual IEEE Symposium on Logic in Computer Science, pages 113-122, 2009.
G.M. Del Corso, A. Gulli, and F. Romani. Fast PageRank computation via a sparse linear system. Internet Mathematics, 2(3):251-273, 2005.
C.D. Godsil. Some graphs with characteristic polynomials which are not solvable by radicals. Journal of Graph Theory, 6:211-214, 1982.
G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press, fourth edition, 2013.
E. Grädel, E. Rosen, and M. Otto. Undecidability results on two-variable logics. Archive of Mathematical Logic, 38:313-354, 1999.
D.J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.
Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong. Logics with aggregate operators. J. ACM, 48(4):880-907, 2001. URL: http://dx.doi.org/10.1145/502090.502100.
http://dx.doi.org/10.1145/502090.502100
B. Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of Cambridge, 2010.
D. Hutchison, B. Howe, and D. Suciu. LaraDB: A minimalist kernel for linear and relational algebra computation. In F.N. Afrati and J. Sroka, editors, Proceedings 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, pages 2:1-2:10, 2017.
K.E. Iverson. A Programming Language. John Wiley &Sons, Inc., 1962.
Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query languages. J. Comput. Syst. Sci., 51(1):26-52, 1995. URL: http://dx.doi.org/10.1006/jcss.1995.1051.
http://dx.doi.org/10.1006/jcss.1995.1051
M. Kim. TensorDB and Tensor-Relational Model for Efficient Tensor-Relational Operations. PhD thesis, Arizona State University, 2014.
A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate functions. jacm, 29(3):699-717, 1982.
Ph.G. Kolaitis. On the expressive power of logics on finite models. In Finite Model Theory and Its Applications, chapter 2. Springer, 2007.
G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer, 2000.
B. Laubner. The Structure of Graphs and New Logics for the Characterization of Polynomial Time. PhD thesis, Humboldt-Universität zu Berlin, 2010.
J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets. Cambridge University Press, second edition, 2014.
Leonid Libkin. Expressive power of SQL. Theor. Comput. Sci., 296(3):379-404, 2003. URL: http://dx.doi.org/10.1016/S0304-3975(02)00736-3.
http://dx.doi.org/10.1016/S0304-3975(02)00736-3
H.Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. In-database factorized learning. In J.L. Reutter and D. Srivastava, editors, Proceedings 11th Alberto Mendelzon International Workshop on Foundations of Data Management, volume 1912 of CEUR Workshop Proceedings, 2017.
W. Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of Polynomial Time. PhD thesis, RWTH Aachen, 2015.
F. Rusu and Y. Cheng. A survey on array storage, query languages, and systems. arXiv:1302.0103, 2013.
T. Sato. Embedding Tarskian semantics in vector spaces. arXiv:1703.03193, 2017.
T. Sato. A linear algebra approach to datalog evaluation. Theory and Practice of Logic Programming, 17(3):244-265, 2017.
M. Schaefer. Complexity of some geometric and topological problems. In D. Eppstein and E.R. Gansner, editors, Graph Drawing, volume 5849 of Lecture Notes in Computer Science, pages 334-344. Springer, 2009.
M. Schaefer and D. Štefankovič. Fixed points, Nash equilibria, and the existential theory of the reals. Theory of Computing Systems, 60(2):172-193, 2017.
M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression models over factorized joins. In Proceedings 2016 International Conference on Management of Data, pages 3-18. ACM, 2016.
J. Van den Bussche, D. Van Gucht, and S. Vansummeren. A crash course in database queries. In Proceedings 26th ACM Symposium on Principles of Database Systems, pages 143-154. ACM Press, 2007.
M. Vardi. The complexity of relational query languages. In Proceedings 14th ACM Symposium on the Theory of Computing, pages 137-146, 1982.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode