{"@context":"https:\/\/schema.org\/","@type":"ScholarlyArticle","@id":"#article10322","name":"Tight Conditional Lower Bounds for Longest Common Increasing Subsequence","abstract":"We consider the canonical generalization of the well-studied Longest Increasing Subsequence problem to multiple sequences, called k-LCIS: Given k integer sequences X_1,...,X_k of length at most n, the task is to determine the length of the longest common subsequence of X_1,...,X_k that is also strictly increasing. Especially for the case of k=2 (called LCIS for short), several algorithms have been proposed that require quadratic time in the worst case.\r\n\r\nAssuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound, specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the proof makes no use of normalization tricks common to hardness proofs for similar problems such as LCS. We further strengthen this lower bound to rule out O((nL)^{1-epsilon}) time algorithms for LCIS, where L denotes the solution size, and to rule out O(n^{k-epsilon}) time algorithms for k-LCIS. We obtain the same conditional lower bounds for the related Longest Common Weakly Increasing Subsequence problem.","keywords":["fine-grained complexity","combinatorial pattern matching","sequence alignments","parameterized complexity","SETH"],"author":[{"@type":"Person","name":"Duraj, Lech","givenName":"Lech","familyName":"Duraj"},{"@type":"Person","name":"K\u00fcnnemann, Marvin","givenName":"Marvin","familyName":"K\u00fcnnemann"},{"@type":"Person","name":"Polak, Adam","givenName":"Adam","familyName":"Polak"}],"position":15,"pageStart":"15:1","pageEnd":"15:13","dateCreated":"2018-03-02","datePublished":"2018-03-02","isAccessibleForFree":true,"license":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/legalcode","copyrightHolder":[{"@type":"Person","name":"Duraj, Lech","givenName":"Lech","familyName":"Duraj"},{"@type":"Person","name":"K\u00fcnnemann, Marvin","givenName":"Marvin","familyName":"K\u00fcnnemann"},{"@type":"Person","name":"Polak, Adam","givenName":"Adam","familyName":"Polak"}],"copyrightYear":"2018","accessMode":"textual","accessModeSufficient":"textual","creativeWorkStatus":"Published","inLanguage":"en-US","sameAs":"https:\/\/doi.org\/10.4230\/LIPIcs.IPEC.2017.15","publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","citation":"http:\/\/dx.doi.org\/10.1016\/j.ipl.2004.02.008","isPartOf":{"@type":"PublicationVolume","@id":"#volume6292","volumeNumber":89,"name":"12th International Symposium on Parameterized and Exact Computation (IPEC 2017)","dateCreated":"2018-03-02","datePublished":"2018-03-02","editor":[{"@type":"Person","name":"Lokshtanov, Daniel","givenName":"Daniel","familyName":"Lokshtanov"},{"@type":"Person","name":"Nishimura, Naomi","givenName":"Naomi","familyName":"Nishimura"}],"isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#article10322","isPartOf":{"@type":"Periodical","@id":"#series116","name":"Leibniz International Proceedings in Informatics","issn":"1868-8969","isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#volume6292"}}}