We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let P be a set of n vertices in the plane and let S be a set of line segments between the vertices in P, with no two line segments intersecting properly. We present two 1-local O(1)-memory routing algorithms on the visibility graph of P with respect to a set of constraints S (i.e., the algorithms never look beyond the direct neighbours of the current location and store only a constant amount of information). Contrary to all existing routing algorithms, our routing algorithms do not require us to compute a plane subgraph of the visibility graph in order to route on it.