Augmenting Graphs to Minimize the Radius
We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5/3-ε)-approximation algorithm, for any ε > 0, unless P = NP.
We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.
graph augmentation
radius
approximation algorithm
Theory of computation~Design and analysis of algorithms
45:1-45:20
Regular Paper
Joachim
Gudmundsson
Joachim Gudmundsson
The University of Sydney, Australia
Yuan
Sha
Yuan Sha
The University of Sydney, Australia
Fan
Yao
Fan Yao
The University of Sydney, Australia
10.4230/LIPIcs.ISAAC.2021.45
Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discret. Appl. Math., 23(1):11-24, 1989.
Davide Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-approximability results for graph diameter decreasing problems. Theor. Comput. Sci., 417:12-22, 2012.
Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings of the 22nd International Symposium on Mathematical Foundations of Computer Science (MFCS), pages 19-36, 1997.
Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk. A c^k n 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317-378, 2016.
Gerard J. Chang and George L. Nemhauser. The k-domination and k-stability problems for sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5(3):332-345, 1984.
Victor Chepoi and Yann Vaxès. Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica, 33(2):243-262, 2002.
Erik D. Demaine and Morteza Zadimoghaddam. Minimizing the diameter of a network using shortcut edges. In Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, pages 420-431, 2010.
Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 750-759, 1999.
Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, and Luke Mathieson. Augmenting graphs to minimize the diameter. Algorithmica, 72(4):995-1010, 2015.
Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, pages 338-346. IEEE Computer Society, 1984.
Yong Gao, Donovan R. Hare, and James Nastos. The parametric complexity of graph diameter augmentation. Discret. Appl. Math., 161(10-11):1626-1631, 2013.
Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci., 38:293-306, 1985.
C. Johnson and H. Wang. A linear-time algorithm for radius-optimally augmenting paths in a metric space. In Proceedings of the 15th International Symposium on Algorithms and Data Structures, pages 466-480, 2019.
Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Oper. Res. Lett., 11(5):303-308, 1992.
Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986.
Anneke A. Schoone, Hans L. Bodlaender, and Jan van Leeuwen. Diameter increase caused by edge deletion. Journal of Graph Theory, 11(3):409-427, 1987.
Joachim Gudmundsson, Yuan Sha, and Fan Yao
Creative Commons Attribution 4.0 International license
https://creativecommons.org/licenses/by/4.0/legalcode