Tight (Double) Exponential Bounds for Identification Problems: Locating-Dominating Set and Test Cover

Authors Dipayan Chakraborty , Florent Foucaud , Diptapriyo Majumdar , Prafullkumar Tale



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2024.19.pdf
  • Filesize: 1 MB
  • 18 pages

Document Identifiers

Author Details

Dipayan Chakraborty
  • Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS, 63000 Clermont-Ferrand, France
  • Department of Mathematics and Applied Mathematics, University of Johannesburg, South Africa
Florent Foucaud
  • Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS, 63000 Clermont-Ferrand, France
Diptapriyo Majumdar
  • Indraprastha Institute of Information Technology Delhi, New Delhi, India
Prafullkumar Tale
  • Indian Institute of Science Education and Research Bhopal, India

Cite As Get BibTex

Dipayan Chakraborty, Florent Foucaud, Diptapriyo Majumdar, and Prafullkumar Tale. Tight (Double) Exponential Bounds for Identification Problems: Locating-Dominating Set and Test Cover. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ISAAC.2024.19

Abstract

Foucaud et al. [ICALP 2024] demonstrated that some problems in NP can admit (tight) double-exponential lower bounds when parameterized by treewidth or vertex cover number. They showed these first-of-their-kind results by proving conditional lower bounds for certain graph problems, in particular, the metric-based identification problems (Strong) Metric Dimension. We continue this line of research and highlight the usefulness of this type of problems, to prove relatively rare types of (tight) lower bounds. We investigate fine-grained algorithmic aspects of classical (non-metric based) identification problems in graphs, namely Locating-Dominating Set, and in set systems, namely Test Cover. In the first problem, an input is a graph G on n vertices and an integer k, and the objective is to decide whether there is a subset S of k vertices such that any two distinct vertices not in S are dominated by distinct subsets of S. In the second problem, an input is a set of items U, a collection of subsets ℱ of U called tests, and an integer k, and the objective is to select a set S of at most k tests such that any two distinct items are contained in a distinct subset of tests of S. 
For our first result, we adapt the techniques introduced by Foucaud et al. [ICALP 2024] to prove similar (tight) lower bounds for these two problems.  
- Locating-Dominating Set (respectively, Test Cover) parameterized by the treewidth of the input graph (respectively, the natural auxiliary graph) does not admit an algorithm running in time 2^{2^o(tw)} ⋅ poly(n) (respectively, 2^{2^o(tw)} ⋅ poly(|U| + |ℱ|))), unless the ETH fails.  This augments the short list of NP-Complete problems that admit tight double-exponential lower bounds when parameterized by treewidth, and shows that "local" (non-metric-based) problems can also admit such bounds. We show that these lower bounds are tight by designing treewidth-based dynamic programming schemes with matching running times.
Next, we prove that these two problems also admit "exotic" (and tight) lower bounds, when parameterized by the solution size k. We prove that unless the ETH fails,  
- Locating-Dominating Set does not admit an algorithm running in time 2^o(k²) ⋅ poly(n), nor a polynomial-time kernelization algorithm that reduces the solution size and outputs a kernel with 2^o(k) vertices, and 
- Test Cover does not admit an algorithm running in time 2^{2^o(k)} ⋅ poly(|U| + |ℱ|) nor a kernel with 2^{2^o(k)} vertices.  Again, we show that these lower bounds are tight by designing (kernelization) algorithms with matching running times. To the best of our knowledge, Locating-Dominating Set is the first known problem which is FPT when parameterized by solution size k, where the optimal running time has a quadratic function in the exponent. These results also extend the (very) small list of problems that admit an ETH-based lower bound on the number of vertices in a kernel, and (for Test Cover) a double-exponential lower bound when parameterized by the solution size. Whereas it is the first example, to the best of our knowledge, that admit a double exponential lower bound for the number of vertices.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Identification Problems
  • Locating-Dominating Set
  • Test Cover
  • Double Exponential Lower Bound
  • ETH
  • Kernelization Lower Bounds

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction: The untold story. ACM Trans. Comput. Theory, 11(3):18:1-18:22, 2019. URL: https://doi.org/10.1145/3319909.
  2. Ian Anderson. Combinatorics of Finite Sets. Oxford University Press, 1987. Google Scholar
  3. Gabriela R. Argiroffo, Silvia M. Bianchi, Yanina Lucarini, and Annegret Katrin Wagler. Linear-time algorithms for three domination-based separation problems in block graphs. Discret. Appl. Math., 281:6-41, 2020. URL: https://doi.org/10.1016/J.DAM.2019.08.001.
  4. László Babai. On the complexity of canonical labelling of strongly regular graphs. SIAM J. Comput., 9(1):212-216, 1980. URL: https://doi.org/10.1137/0209018.
  5. Florian Barbero, Lucas Isenmann, and Jocelyn Thiebaut. On the distance identifying set meta-problem and applications to the complexity of identifying problems on graphs. Algorithmica, 82(8):2243-2266, 2020. URL: https://doi.org/10.1007/S00453-020-00674-X.
  6. Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially polynomial kernels for set cover and test cover. SIAM J. Discret. Math., 30(3):1401-1423, 2016. URL: https://doi.org/10.1137/15M1039584.
  7. Piotr Berman, Bhaskar DasGupta, and Ming-Yang Kao. Tight approximability results for test set problems in bioinformatics. J. Comput. Syst. Sci., 71(2):145-162, 2005. URL: https://doi.org/10.1016/J.JCSS.2005.02.001.
  8. Ivan Bliznets and Markus Hecher. Tight double exponential lower bounds. In Xujin Chen and Bo Li, editors, Theory and Applications of Models of Computation - 18th Annual Conference, TAMC 2024, Hong Kong, China, May 13-15, 2024, Proceedings, volume 14637 of Lecture Notes in Computer Science, pages 124-136. Springer, 2024. URL: https://doi.org/10.1007/978-981-97-2340-9_11.
  9. John A Bondy. Induced subsets. Journal of Combinatorial Theory, Series B, 12(2):201-202, 1972. Google Scholar
  10. Koen M. J. De Bontridder, Bjarni V. Halldórsson, Magnús M. Halldórsson, Cor A. J. Hurkens, Jan Karel Lenstra, R. Ravi, and Leen Stougie. Approximation algorithms for the test cover problem. Math. Program., 98(1-3):477-491, 2003. URL: https://doi.org/10.1007/S10107-003-0414-6.
  11. Márcia R. Cappelle, Guilherme de C. M. Gomes, and Vinícius Fernandes dos Santos. Parameterized algorithms for locating-dominating sets. CoRR, abs/2011.14849, 2020. URL: https://arxiv.org/abs/2011.14849.
  12. Márcia R. Cappelle, Guilherme C. M. Gomes, and Vinícius Fernandes dos Santos. Parameterized algorithms for locating-dominating sets. In Carlos E. Ferreira, Orlando Lee, and Flávio Keidi Miyazawa, editors, Proceedings of the XI Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2021, Online Event / São Paulo, Brazil, May 2021, volume 195 of Procedia Computer Science, pages 68-76. Elsevier, 2021. URL: https://doi.org/10.1016/J.PROCS.2021.11.012.
  13. Dipayan Chakraborty, Anni Hakanen, and Tuomo Lehtilä. The n/2-bound for locating-dominating sets in subcubic graphs, 2024. URL: https://arxiv.org/abs/2406.19278.
  14. Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, and Sébastien Ratel. Non-clashing teaching maps for balls in graphs. CoRR, abs/2309.02876, 2023. URL: https://doi.org/10.48550/arXiv.2309.02876.
  15. L. Sunil Chandran, Davis Issac, and Anreas Karrenbauer. On the parameterized complexity of biclique cover and partition. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, volume 63 of LIPIcs, pages 11:1-11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.IPEC.2016.11.
  16. Emmanuel Charbit, Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein. Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances in Mathematics of Communication, 2(4):403-420, 2008. URL: https://doi.org/10.3934/AMC.2008.2.403.
  17. Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein. Discriminating codes in (bipartite) planar graphs. Eur. J. Comb., 29(5):1353-1364, 2008. URL: https://doi.org/10.1016/J.EJC.2007.05.006.
  18. Bogdan S. Chlebus and Sinh Hoa Nguyen. On finding optimal discretizations for two attributes. In Proceedings of the First International Conference on Rough Sets and Current Trends in Computing, volume 1424, pages 537-544, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-69115-4_74.
  19. Vasek Chvátal. Mastermind. Combinatorica, 3(3):325-329, 1983. URL: https://doi.org/10.1007/BF02579188.
  20. C. Colbourn, P. J. Slater, and L. K. Stewart. Locating-dominating sets in series-parallel networks. Congressus Numerantium, 56:135-162, 1987. Google Scholar
  21. Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  22. Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  23. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000. URL: https://doi.org/10.1007/S002249910009.
  24. Robert Crowston, Gregory Z. Gutin, Mark Jones, Gabriele Muciaccia, and Anders Yeo. Parameterizations of test cover with bounded test sizes. Algorithmica, 74(1):367-384, 2016. URL: https://doi.org/10.1007/S00453-014-9948-7.
  25. Robert Crowston, Gregory Z. Gutin, Mark Jones, Saket Saurabh, and Anders Yeo. Parameterized study of the test cover problem. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 283-295. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32589-2_27.
  26. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  27. Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique cover are probably optimal. SIAM J. Comput., 45(1):67-83, 2016. URL: https://doi.org/10.1137/130947076.
  28. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. URL: https://dblp.org/rec/books/daglib/0030488.bib.
  29. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and ids. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 378-389. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02927-1_32.
  30. Johannes Klaus Fichte, Markus Hecher, Michael Morak, Patrick Thier, and Stefan Woltran. Solving projected model counting by utilizing treewidth and its limits. Artif. Intell., 314:103810, 2023. URL: https://doi.org/10.1016/J.ARTINT.2022.103810.
  31. Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploiting treewidth for projected model counting and its limits. In Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Proc., volume 10929 of Lecture Notes in Computer Science, pages 165-184. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94144-8_11.
  32. Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Wegrzycki. Hitting meets packing: How hard can it be? In 32nd Annual European Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London, United Kingdom, volume 308 of LIPIcs, pages 55:1-55:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ESA.2024.55.
  33. Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms, 15(1):9:1-9:27, 2019. URL: https://doi.org/10.1145/3280824.
  34. Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. Google Scholar
  35. Florent Foucaud. Decision and approximation complexity for identifying codes and locating-dominating sets in restricted graph classes. J. Discrete Algorithms, 31:48-68, 2015. URL: https://doi.org/10.1016/J.JDA.2014.08.004.
  36. Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale. Problems in NP can admit double-exponential lower bounds when parameterized by treewidth or vertex cover. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 66:1-66:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.66.
  37. Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov. Identification, location-domination and metric dimension on interval and permutation graphs. I. bounds. Theoretical Computer Science, 668:43-58, 2017. URL: https://doi.org/10.1016/J.TCS.2017.01.006.
  38. Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov. Identification, location-domination and metric dimension on interval and permutation graphs. II. algorithms and complexity. Algorithmica, 78(3):914-944, 2017. URL: https://doi.org/10.1007/S00453-016-0184-1.
  39. M. R. Garey and David S. Johnson. Computers and Intractability - A guide to NP-completeness. W.H. Freeman and Company, 1979. Google Scholar
  40. Sylvain Gravier, Ralf Klasing, and Julien Moncel. Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Oper. Res., 3(1), 2008. URL: http://journals.hil.unb.ca/index.php/AOR/article/view/2808.
  41. Gregory Z. Gutin, Gabriele Muciaccia, and Anders Yeo. (non-)existence of polynomial kernels for the test cover problem. Inf. Process. Lett., 113(4):123-126, 2013. URL: https://doi.org/10.1016/J.IPL.2012.12.008.
  42. Tesshu Hanaka, Noleen Köhler, and Michael Lampis. Core stability in additively separable hedonic games of low treewidth, 2024. https://arxiv.org/abs/2402.10815, URL: https://doi.org/10.48550/arXiv.2402.10815.
  43. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/JCSS.2000.1727.
  44. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/JCSS.2001.1774.
  45. Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime is tight for 2-stage stochastic ILPs. Math. Program., 197:1145-1172, 2023. URL: https://doi.org/10.1007/S10107-022-01837-0.
  46. D. Jean and A Lobstein. Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography, 2024. Published electronically at URL: https://dragazo.github.io/bibdom/main.pdf.
  47. Dusan Knop, Michal Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for integer linear programming with few constraints. ACM Trans. Comput. Theory, 12(3):19:1-19:19, 2020. URL: https://doi.org/10.1145/3397484.
  48. Lukasz Kowalik, Alexandra Lassota, Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski. Detecting points in integer cones of polytopes is double-exponentially hard. In 2024 Symposium on Simplicity in Algorithms (SOSA), pages 279-285, 2024. URL: https://doi.org/10.1137/1.9781611977936.25.
  49. Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel is essentially tight. ACM Trans. Algorithms, 12(3):40:1-40:16, 2016. URL: https://doi.org/10.1145/2832912.
  50. M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 131:1-131:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.131.
  51. Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to Courcelle’s theorem. In Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, volume 10929 of Lecture Notes in Computer Science, pages 235-252. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94144-8_15.
  52. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
  53. Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. An ETH-tight algorithm for multi-team formation. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of LIPIcs, pages 28:1-28:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.FSTTCS.2021.28.
  54. Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choosability problems parameterized by treewidth. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 28:1-28:15, 2016. URL: https://doi.org/10.4230/LIPICS.ICALP.2016.28.
  55. Bernard M. E. Moret and Henry D. Shapiro. On minimizing a set of tests. SIAM Journal on Scientific and Statistical Computing, 6(4):983-1003, 1985. Google Scholar
  56. Tobias Müller and Jean-Sébastien Sereni. Identifying and locating-dominating codes in (random) geometric networks. Comb. Probab. Comput., 18(6):925-952, 2009. URL: https://doi.org/10.1017/S0963548309990344.
  57. Marcin Pilipczuk and Manuel Sorge. A double exponential lower bound for the distinct vectors problem. Discret. Math. Theor. Comput. Sci., 22(4), 2020. URL: https://doi.org/10.23638/DMTCS-22-4-7.
  58. Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A logical approach. In Mathematical Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Proceedings, volume 6907 of Lecture Notes in Computer Science, pages 520-531. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22993-0_47.
  59. N.S.V. Rao. Computational complexity issues in operative diagnosis of graph-based systems. IEEE Transactions on Computers, 42(4):447-457, 1993. URL: https://doi.org/10.1109/12.214691.
  60. Alfred Rényi. On random generating elements of a finite boolean algebra. Acta Scientiarum Mathematicarum Szeged, 22:75-81, 1961. Google Scholar
  61. Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded treewidth graphs. Inf. Comput., 281:104812, 2021. URL: https://doi.org/10.1016/J.IC.2021.104812.
  62. András Sebö and Eric Tannier. On metric generators of graphs. Mathematics of Operations Research, 29(2):383-393, 2004. URL: https://doi.org/10.1287/MOOR.1030.0070.
  63. Peter J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55-64, 1987. URL: https://doi.org/10.1002/net.3230170105.
  64. Peter J. Slater. Dominating and reference sets in a graph. Journal of Mathematical and Physical Sciences, 22(4):445-455, 1988. Google Scholar
  65. Jukka Suomela. Approximability of identifying codes and locating-dominating codes. Inf. Process. Lett., 103(1):28-33, 2007. URL: https://doi.org/10.1016/J.IPL.2007.02.001.
  66. P. Tale. Double exponential lower bound for telephone broadcast, 2024. https://arxiv.org/abs/2403.03501, URL: https://doi.org/10.48550/arXiv.2403.03501.
  67. Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566-577. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04128-0_51.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail