{"@context":"https:\/\/schema.org\/","@type":"ScholarlyArticle","@id":"#article9379","name":"Quantum Codes from High-Dimensional Manifolds","abstract":"We construct toric codes on various high-dimensional manifolds. Assuming a conjecture in geometry we find families of \r\nquantum CSS stabilizer codes on N qubits with logarithmic weight stabilizers and distance N^{1-\\epsilon} for any \\epsilon>0.\r\nThe conjecture is that there is a constant C>0 such that for any n-dimensional torus {\\mathbb T}^n={\\mathbb R}^n\/\\Lambda, where \\Lambda is a lattice, the least volume unoriented n\/2-dimensional cycle (using the Euclidean metric) representing nontrivial homology has volume at least C^n times the volume of the least volume n\/2-dimensional hyperplane representing nontrivial homology; in fact, it would suffice to have this result for \\Lambda an integral lattice with the cycle restricted to faces of a cubulation by unit hypercubes.\r\nThe main technical result is an estimate of Rankin invariants for certain random lattices, showing that in a certain sense they are optimal.\r\nAdditionally, we construct codes with square-root distance, logarithmic weight stabilizers, and inverse polylogarithmic soundness factor (considered as quantum locally testable codes.\r\nWe also provide an short, alternative proof that the shortest vector in the exterior power of a lattice may be non-split.","keywords":["quantum codes","random lattices","Rankin invariants"],"author":{"@type":"Person","name":"Hastings, Matthew B.","givenName":"Matthew B.","familyName":"Hastings"},"position":25,"pageStart":"25:1","pageEnd":"25:26","dateCreated":"2017-11-28","datePublished":"2017-11-28","isAccessibleForFree":true,"license":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/legalcode","copyrightHolder":{"@type":"Person","name":"Hastings, Matthew B.","givenName":"Matthew B.","familyName":"Hastings"},"copyrightYear":"2017","accessMode":"textual","accessModeSufficient":"textual","creativeWorkStatus":"Published","inLanguage":"en-US","sameAs":"https:\/\/doi.org\/10.4230\/LIPIcs.ITCS.2017.25","publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","citation":["http:\/\/dx.doi.org\/10.1016\/S0012-9593(99)80003-2","http:\/\/dx.doi.org\/10.1063\/1.2731356","http:\/\/dx.doi.org\/10.1103\/physreva.54.1098","http:\/\/www.encyclopediaofmath.org\/index.php?title=Federer-Fleming_deformation_theorem&oldid=28190","http:\/\/dx.doi.org\/10.1007\/s102080010013","http:\/\/dx.doi.org\/10.1016\/s0003-4916(02)00018-0"],"isPartOf":{"@type":"PublicationVolume","@id":"#volume6270","volumeNumber":67,"name":"8th Innovations in Theoretical Computer Science Conference (ITCS 2017)","dateCreated":"2017-11-28","datePublished":"2017-11-28","editor":{"@type":"Person","name":"Papadimitriou, Christos H.","givenName":"Christos H.","familyName":"Papadimitriou"},"isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#article9379","isPartOf":{"@type":"Periodical","@id":"#series116","name":"Leibniz International Proceedings in Informatics","issn":"1868-8969","isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#volume6270"}}}