eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2017-11-28
44:1
44:27
10.4230/LIPIcs.ITCS.2017.44
article
Non-Backtracking Spectrum of Degree-Corrected Stochastic Block Models
Gulikers, Lennart
Lelarge, Marc
Massoulié, Laurent
Motivated by community detection, we characterise the spectrum of the non-backtracking matrix B in the Degree-Corrected Stochastic Block Model.
Specifically, we consider a random graph on n vertices partitioned into two asymptotically equal-sized clusters. The vertices have i.i.d. weights {\phi_u}_{u=1}^n with second moment \PHItwo. The intra-cluster connection probability for vertices u and v is \frac{\phi_u \phi_v}{n}a and the inter-cluster connection probability is \frac{\phi_u \phi_v}{n}b.
We show that with high probability, the following holds: The leading eigenvalue of the non-backtracking matrix B is asymptotic to \rho = \frac{a+b}{2} \PHItwo. The second eigenvalue is asymptotic to \mu_2 = \frac{a-b}{2} \PHItwo when \mu_2^2 > \rho, but asymptotically bounded by \sqrt{\rho} when \mu_2^2 \leq \rho. All the remaining eigenvalues are asymptotically bounded by \sqrt{\rho}. As a result, a clustering positively-correlated with the true communities can be obtained based on the second eigenvector of B in the regime where \mu_2^2 > \rho.
In a previous work we obtained that detection is impossible when $\mu_2^2 \leq \rho,$ meaning that there occurs a phase-transition in the sparse regime of the Degree-Corrected Stochastic Block Model.
As a corollary, we obtain that Degree-Corrected Erdös-Rényi graphs asymptotically satisfy the graph Riemann hypothesis, a quasi-Ramanujan property.
A by-product of our proof is a weak law of large numbers for local-functionals on Degree-Corrected Stochastic Block Models, which could be of independent interest.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol067-itcs2017/LIPIcs.ITCS.2017.44/LIPIcs.ITCS.2017.44.pdf
Degree-Corrected Stochastic Block Model
Non-backtracking Matrix
Machine Learning
Social Networks