LIPIcs.ITCS.2025.18.pdf
- Filesize: 0.85 MB
- 23 pages
The Cohn-Umans (FOCS '03) group-theoretic framework for matrix multiplication produces fast matrix multiplication algorithms from three subsets of a finite group G satisfying a simple combinatorial condition (the Triple Product Property). The complexity of such an algorithm then depends on the representation theory of G. In this paper we extend the group-theoretic framework to the setting of infinite groups. In particular, this allows us to obtain constructions in Lie groups, with favorable parameters, that are provably impossible in finite groups of Lie type (Blasiak, Cohn, Grochow, Pratt, and Umans, ITCS '23). Previously the Lie group setting was investigated purely as an analogue of the finite group case; a key contribution in this paper is a fully developed framework for obtaining bona fide matrix multiplication algorithms directly from Lie group constructions. As part of this framework, we introduce "separating functions" as a necessary new design component, and show that when the underlying group is G = GL_n, these functions are polynomials with their degree being the key parameter. In particular, we show that a construction with "half-dimensional" subgroups and optimal degree would imply ω = 2. We then build up machinery that reduces the problem of constructing optimal-degree separating polynomials to the problem of constructing a single polynomial (and a corresponding set of group elements) in a ring of invariant polynomials determined by two out of the three subgroups that satisfy the Triple Product Property. This machinery combines border rank with the Lie algebras associated with the Lie subgroups in a critical way. We give several constructions illustrating the main components of the new framework, culminating in a construction in a special unitary group that achieves separating polynomials of optimal degree, meeting one of the key challenges. The subgroups in this construction have dimension approaching half the ambient dimension, but (just barely) too slowly. We argue that features of the classical Lie groups make it unlikely that constructions in these particular groups could produce nontrivial bounds on ω unless they prove ω = 2. One way to get ω = 2 via our new framework would be to lift our existing construction from the special unitary group to GL_n, and improve the dimension of the subgroups from (dim G)/2 - Θ(n) to (dim G)/2 - o(n).
Feedback for Dagstuhl Publishing