Adjacency Labeling Schemes for Small Classes

Authors Édouard Bonnet , Julien Duron , John Sylvester , Viktor Zamaraev



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.21.pdf
  • Filesize: 0.8 MB
  • 22 pages

Document Identifiers

Author Details

Édouard Bonnet
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Julien Duron
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
John Sylvester
  • Department of Computer Science, University of Liverpool, UK
Viktor Zamaraev
  • Department of Computer Science, University of Liverpool, UK

Acknowledgements

We are grateful to Maksim Zhukovskii for many stimulating discussions on the topic of this paper. The first author thanks Szymon Toruńczyk for introducing him to (and answering questions on) the topic of paths with low crossing number.

Cite As Get BibTex

Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency Labeling Schemes for Small Classes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.21

Abstract

A graph class admits an implicit representation if, for every positive integer n, its n-vertex graphs have a O(log n)-bit (adjacency) labeling scheme, i.e., their vertices can be labeled by binary strings of length O(log n) such that the presence of an edge between any pair of vertices can be deduced solely from their labels. The famous Implicit Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs) factorial (i.e., containing 2^O(n log n) n-vertex graphs) class admits an implicit representation. The conjecture was recently refuted [Hatami and Hatami, FOCS '22], and does not even hold among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP '24]. However, monotone small (i.e., containing at most n! cⁿ many n-vertex graphs for some constant c) classes do admit implicit representations.
This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite complete graph as a subgraph) class has an implicit representation. This is a consequence of the following fact of independent interest proved in the paper: Every weakly sparse small class has bounded expansion (hence, in particular, bounded degeneracy). Second, we show that every hereditary small class admits an O(log³ n)-bit labeling scheme, which provides a substantial improvement of the best-known polynomial upper bound of n^(1-ε) on the size of adjacency labeling schemes for such classes. This is a consequence of another fact of independent interest proved in the paper: Every small class has neighborhood complexity O(n log n).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
Keywords
  • Adjacency labeling
  • degeneracy
  • weakly sparse classes
  • small classes
  • implicit graph conjecture

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Algorithms, Logic and Structure Workshop in Warwick – Open Problem Session, 2016. URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf.
  2. Bogdan Alecu, Vladimir E. Alekseev, Aistis Atminas, Vadim Lozin, and Viktor Zamaraev. Graph parameters, implicit representations and factorial properties. Discrete Mathematics, 346(10):113573, 2023. URL: https://doi.org/10.1016/j.disc.2023.113573.
  3. Peter Allen, Vadim V. Lozin, and Michaël Rao. Clique-width and the speed of hereditary properties. Electron. J. Comb., 16(1), 2009. URL: https://doi.org/10.37236/124.
  4. Noga Alon. Implicit representation of sparse hereditary families. Discret. Comput. Geom., to appear, 2023. URL: https://doi.org/10.1007/s00454-023-00521-0.
  5. Stephen Alstrup, Søren Dahlgaard, and Mathias Bæk Tejs Knudsen. Optimal induced universal graphs and adjacency labeling for trees. Journal of the ACM (JACM), 64(4):1-22, 2017. URL: https://doi.org/10.1145/3088513.
  6. Aistis Atminas, Vadim V Lozin, and Igor Razgon. Graphs without large bicliques and well-quasi-orderability by the induced subgraph relation. Journal of Combinatorics, 10(2):327-337, 2019. URL: https://doi.org/10.4310/JOC.2019.v10.n2.a8.
  7. Avah Banerjee. An adjacency labeling scheme based on a decomposition of trees into caterpillars. In Combinatorial Algorithms: 33rd International Workshop, (IWOCA 2022), proceedings, pages 114-127. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-06678-8_9.
  8. Lowell W Beineke and Raymond E Pippert. The number of labeled k-dimensional trees. Journal of Combinatorial Theory, 6(2):200-205, 1969. Google Scholar
  9. Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Symmetric-Difference (Degeneracy) and Signed Tree Models. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024), volume 306 of LIPIcs, pages 32:1-32:16, 2024. URL: https://doi.org/10.4230/LIPIcs.MFCS.2024.32.
  10. Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim Zhukovskii. Small but unwieldy: A lower bound on adjacency labels for small classes. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 1147-1165, 2024. URL: https://doi.org/10.1137/1.9781611977912.44.
  11. Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim Zhukovskii. Tight bounds on adjacency labels for monotone graph classes. In 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, volume 297 of LIPIcs, pages 31:1-20, 2024. URL: https://doi.org/10.4230/LIPIcs.ICALP.2024.31.
  12. Édouard Bonnet, Florent Foucaud, Tuomo Lehtilä, and Aline Parreau. Neighbourhood complexity of graphs of bounded twin-width. European Journal of Combinatorics, 115:103772, 2024. URL: https://doi.org/10.1016/j.ejc.2023.103772.
  13. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small classes. Combinatorial Theory, 2 (2), 2022. URL: https://doi.org/10.5070/c62257876.
  14. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. Algorithmica, 84(11):3300-3337, 2022. URL: https://doi.org/10.1007/s00453-022-00965-5.
  15. Kellogg S Booth and George S Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of computer and system sciences, 13(3):335-379, 1976. URL: https://doi.org/10.1016/S0022-0000(76)80045-1.
  16. Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and Szymon Toruńczyk. First-order model checking on monadically stable graph classes. arXiv preprint, 2023. URL: https://arxiv.org/abs/2311.18740.
  17. Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, pages 1550-1560, New York, NY, USA, 2024. Association for Computing Machinery. URL: https://doi.org/10.1145/3618260.3649739.
  18. R. M. Dudley. Central limit theorems for empirical measures. Ann. Probab., 6(6):899-929, 1978. Google Scholar
  19. Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin. Adjacency labelling for planar graphs (and beyond). Journal of the ACM (JACM), 68(6):1-33, 2021. URL: https://doi.org/10.1145/3477542.
  20. Zdeněk Dvořák. Asymptotical structure of combinatorial objects. PhD thesis, 2007. Google Scholar
  21. Zdeněk Dvořák. Induced subdivisions and bounded expansion. Eur. J. Comb., 69:143-148, 2018. URL: https://doi.org/10.1016/J.EJC.2017.10.004.
  22. Zdenek Dvorák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses of sparse graphs. J. ACM, 60(5):36:1-36:24, 2013. URL: https://doi.org/10.1145/2499483.
  23. Zdenek Dvorák and Sergey Norin. Strongly sublinear separators and polynomial expansion. SIAM J. Discret. Math., 30(2):1095-1101, 2016. URL: https://doi.org/10.1137/15M1017569.
  24. Zdeněk Dvořák and Serguei Norine. Small graph classes and bounded expansion. J. Comb. Theory, Ser. B, 100(2):171-175, 2010. URL: https://doi.org/10.1016/J.JCTB.2009.06.001.
  25. Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michal Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernelization for nowhere dense classes of graphs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 63:1-63:14, 2017. URL: https://doi.org/10.4230/LIPICS.ICALP.2017.63.
  26. Jacob Fox and János Pach. Applications of a new separator theorem for string graphs. Comb. Probab. Comput., 23(1):66-74, 2014. URL: https://doi.org/10.1017/S0963548313000412.
  27. Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific journal of mathematics, 15(3):835-855, 1965. Google Scholar
  28. Cyril Gavoille and Arnaud Labourel. Shorter implicit representation for planar graphs and bounded treewidth graphs. In 15th Annual European Symposium on Algorithms, ESA 2007, volume 4698 of LNCS, pages 582-593. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-75520-3_52.
  29. Ralucca Gera, Stephen Hedetniemi, and Craig Larson, editors. Graph theory - favorite conjectures and open problems. 1. Problem Books in Mathematics. Springer, 2016. Google Scholar
  30. Paul W Goldberg, Martin C Golumbic, Haim Kaplan, and Ron Shamir. Four strikes against physical mapping of DNA. Journal of Computational Biology, 2(1):139-152, 1995. URL: https://doi.org/10.1089/cmb.1995.2.139.
  31. Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs without K_n,n. In Graph-Theoretic Concepts in Computer Science, 26th International Workshop, WG 2000, volume 1928 of LNCS, pages 196-205. Springer, 2000. URL: https://doi.org/10.1007/3-540-40064-8_19.
  32. Phil Hanlon. Counting interval graphs. Transactions of the American Mathematical Society, 272(2):383-426, 1982. Google Scholar
  33. Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS 2022), pages 1134-1137. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00109.
  34. David Haussler. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension. J. Comb. Theory, Ser. A, 69(2):217-232, 1995. Google Scholar
  35. Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. In Proceedings of the twentieth annual ACM symposium on Theory of computing (STOC 1988), pages 334-343, 1988. URL: https://doi.org/10.1145/62212.62244.
  36. Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM Journal on Discrete Mathematics, 5(4):596-603, 1992. URL: https://doi.org/10.1137/0405049.
  37. Tamás Kővári, Vera T. Sós, and Pál Turán. On a problem of Zarankiewicz. In Colloquium Mathematicum, volume 3, pages 50-57. Polska Akademia Nauk, 1954. Google Scholar
  38. Ilia Krasikov, Arieh Lev, and Bhalchandra D Thatte. Upper bounds on the automorphism group of a graph. Discrete Mathematics, 256(1-2):489-493, 2002. URL: https://doi.org/10.1016/S0012-365X(02)00393-X.
  39. Daniela Kühn and Deryk Osthus. Induced subdivisions in K_s,s-free graphs of large average degree. Comb., 24(2):287-304, 2004. URL: https://doi.org/10.1007/S00493-004-0017-8.
  40. Jiří Matoušek. Geometric discrepancy, volume 18 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2010. An illustrated guide, Revised paperback reprint of the 1999 original. URL: https://doi.org/10.1007/978-3-642-03942-3.
  41. John H. Muller. Local Structure in Graph Classes. PhD thesis, Georgia Institute of Technology, 1988. Google Scholar
  42. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  43. Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan. Proper minor-closed families are small. Journal of Combinatorial Theory, Series B, 96(5):754-757, 2006. URL: https://doi.org/10.1016/j.jctb.2006.01.006.
  44. Richard Otter. The number of trees. Ann. of Math. (2), 49:583-599, 1948. URL: https://doi.org/10.2307/1969046.
  45. Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Characterising bounded expansion by neighbourhood complexity. European Journal of Combinatorics, 75:152-168, 2019. URL: https://doi.org/10.1016/j.ejc.2018.08.001.
  46. Jeremy P Spinrad. Efficient Graph Representations, volume 19. Fields Institute monographs. American Mathematical Soc., 2003. URL: http://www.ams.org/bookstore-getitem/item=fim-19.
  47. William Thomas Tutte. A census of planar triangulations. Canadian Journal of Mathematics, 14:21-38, 1962. Google Scholar
  48. Emo Welzl. Partition trees for triangle counting and other range searching problems. In Herbert Edelsbrunner, editor, Proceedings of the Fourth Annual Symposium on Computational Geometry (SoCG 1988), pages 23-33. ACM, 1988. URL: https://doi.org/10.1145/73393.73397.
  49. Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency labeling schemes for small classes, 2024. URL: https://doi.org/10.48550/arXiv.2409.04821.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail